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The impurity diffusion problem in a melt being crystallized in a uniformly accelerated
moving temperature field with temperature gradient decreasing in time has been solved
using the net model within the frame of unidimensional nonsteady solidification model.
The temperature gradient decrease in the process mentioned has been shown to result in a
nonmonotonous time dependence of the crystallization speed, that is in agreement with the

literature experimental data.

MeTomom ceTOK B paMKax OJHOMEPHOII HECTAIMOHAPHOI MOIeJIu 3aTBEPAEBAHUS DPelleHa
sagaua o aud@dysum mpuMecH B PacCIiaBe, KOTOPBLI KPUCTAJIINU3YETCS B PABHOYCKOPEHHO
epeMeIanIleMcsa TEMIEPATYPHOM II0Je ¢ YMEHLIIAMII[MMCSI BO BPEMEHU I'PALUEHTOM TEM-
neparypsl. IIokasaHo, 4uTO yMeHbIIEHME I'PAAMEHTA TEeMIIEpaTyphl B YKA3aHHOM IIpoIliecce
HPUBOAUT K HEMOHOTOHHOMY IIOBEJEHMIO 3aBHCHMOCTH CKOPOCTH KPHCTAJIM3AIUU OT BpeMe-
HU, YTO COIVIACYETCS C M3BECTHBIMMU 9KCIEPHMMEHTAJbHLIMU JAHHBIMU.

1. Introduction

When a crystal is grown from the melt,
it is possible that the growth regime sta-
tionarity may be disturbed for any reason.
This case may result, e.g., in a transition
from the smooth phase interface to the cel-
lular one, that is known to be accompanied by
a sharp deterioration of the crystal quality.

Although the problems related to the
transient effects during the crystallization
are obviously of great importance, those are
discussed in literature mainly in connection
with the high-speed solidification problem
[1]. At the same time, the use of modern
equipment providing the observation of the
phase interface small displacements evi-
dences the necessity of a detailed study of
the crystal growth transient regimen [2].
This is true, e.g., for the solidification
stages under a smooth temperature lowering of
the melted tail part of a crystal when growing
sapphire using the HDC method. This work is
aimed at the consideration of a binary melt
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crystallization under uniformly accelerated
displacement of the temperature field with
temperature gradient decreasing in time.
First of all, it is to note that the deriva-
tion of the formula defining the crystal-
lization speed V(#) in a nonstationary re-
gime [3] does not assume a constant tem-
perature gradient G. Thus, in a general
case, that quantity may be a function of
time, G(t). It is assumed that:
(a) the heat propagation in the crystal-melt
system is instantaneous,
(b) the mass transfer takes place in the melt
only and is due to diffusion only,
(c) the crystal melting temperature is a linear
function of the impurity concentration,
(d) the latent heat of melting is negligible,
(e) the heat conductivity factors in the lig-
uid and solid phases are the same,
(f) temperature T is a linear function of the
distance to the phase interface x

T =Ty + G(t)(x — xg), (1)
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where T is the melting point of the crystal
with the impurity concentration C.

Then the impurity diffusion problem in
the melt in the coordinate system moving
together with the crystallization front can
be presented as

DC, (x,t) + V(})C, (x,t) = Cyx,1), (2)
DC(0,0) = V(t)(k - 1)C(0,1), 3
C(0,1)=Cy, C(x,0)=C, 4

_ m_ (5
V() =a,t + G(t)Ct(O,t).

Here, C(x,t) is the impurity concentration in
the x point of the melt at the time moment
t (indices at C denote the partial derivatives
with respect to x and ¢); k, the impurity
distribution coefficient; D, the impurity
diffusion coefficient in the melt; m, the
liquidus line slope in the phase diagram; C,
the impurity concentration far from the in-
terphase boundary; a,, the acceleration of
the temperature field displacement.

The Eq. (2) describes the impurity diffu-
sion in a medium oncoming the phase inter-
face x = 0 at the speed V(¢). The equality
(3) is the condition of the impurity conser-
vation at that interface. The crystallization
speed of the binary melt, according to (5),
depends in this case on variations in three
quantities, namely, the temperature field
(TF) displacement speed, the impurity con-
centration at the phase interface, and the
temperature gradient.

Results and discussion

The problem is nonlinear, moreover, the
coefficient in the boundary condition is
time-dependent. The problem was solved
using the net method at values of parame-
ters corresponding to Sn + 1% In alloy
studied in experiment in [4]: Cq; = 1%,
k=056, m=-1.8 K/%. A typical value
D = 51075 em2/s and initial temperature
gradient value Gy = 10 K/ecm were also
used. The acceleration value of the TF dis-
placement was varied in certain limits,
thus, it served as a fitting parameter.

The calculations were done according to
the implicit scheme on the net {x; = iA, tj =
jti; i =0, 1, ...100; j = 0, 1, ...120} where
h =13.6 ym and 1 = 1 s are the space and
time variable steps, respectively. The num-
ber of space steps exceeding 100 did not
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Fig. 1. The crystallization speed V as a func-
tion of time ¢ calculated by the net method
for the time step T = 0.33 s and different
values of the space step £ (um): 5.5 (1), 8.3
(2), 12 (3). The solid line presents the ana-
lytical calculation results.

provide any appreciable change in the calcu-
lation results. The number of time steps
was defined by the time (120 s) during
which the crystallization front of the tin-in-
dium alloy remained flat, according to the
data from [4].

It is known [5] that it is rather difficult
to prove the convergence of numerical solu-
tions for equations in partial derivatives,
particularly if those are nonlinear. That is
why the following considerations were taken
into account when selecting the t and & val-
ues.

It has been shown [6] that at small ¢
values, the crystallization speed at acceler-
ated TF displacement with constant tem-
perature gradient is described as

_ 4a,Go\D (6)
Ve = 3V (k — 1)mG,

The V(t) curve calculated from (6) at a, =
1.72 um/s? passes the experimental point
obtained in [4] with coordinates 14 s and
V = 6.1 um/s. That curve for the 10 s in-
terval is shown in Fig. 1 as the solid line. It
is seen from the same Figure that at the
specified time step value, the slope of V(#)
curves calculated by the net method depends
on the space step value. By selecting £, it is
possible to attain the coincidence of numeri-
cally and analytically determined crystal-
lization speed values at the end of the inter-
val mentioned. The curve 2 constructed in
that manner coincides practically with the
analytical one. But for all that, there are
small distinctions between those curves, the
largest difference (referred to as deviation
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Table 1. Deviation of the crystallization speed AV, on 10 s interval depending on the time (1)
and space (h) step values.

T, S 1 0.77 0.5 0.33 0.2 0.1
h, um 13.6 12.1 9.91 8.26 6.56 4.78
AVig, pm/s 0.0642 0.0581 0.0531 0.0517 0.0532 0.0571
V,um/s

and denoted as AVy;) being about the middle
of the interval. The deviations for different
time step values obtained in that manner
and the space step valued corresponding
thereto are presented in Table 1. It is seen

therefrom that the function AV g(r) has a

minimum at t = 0.33 s and £ = 8.3 um.

The elucidation of reasons for such be-
havior of AV, g(1r) as well as the question
about the solution convergence of our dif-
ference problem are outside the frames of
this investigation. Nevertheless, it can be
supposed that the minimum error in the
numerical calculations was attained just at
the step values where the AV, attained a mini-
mum. However, the analysis has shown that the
results calculated for 1t = 1 s and £ = 13.6 um
differ from those for t = 0.33 s and 2 = 8.3 um
only by few per cent. That is, when using
the value 1 = 1 s, the expected error loss is
small, but calculations with 1 s step are
much easier than with any other one.

If the curve 2 of Fig. 1 is continued into
the time region where the approximation
used in the analytical calculation are known
to be unsuitable, it can be noticed (Fig. 2a)
that the V(¢) dependence remains monoto-
nous within the whole time interval of in-
terest. A weak maximum more similar to
the saturation plateau (Fig. 2c¢) is revealed
only at high a, values. For such accelera-
tion wvalues, however, the solidification
model used here seems to require a modifi-
cation [7].

Thus, the impurity accumulation in the
melt in front of the phase interface under
an uniformly accelerated temperature field
displacement is not a sufficient condition
for nonmonotonous behavior of the crystal-
lization speed.

When initiating the solution of the prob-
lem (2)-(5) with time-dependent coefficient
G, its numerical solution error can be sup-
posed to be approximately the same as in
the case G = const. On the one hand, it is
obvious that to define the law for the tem-
perature field variation during the sponta-
neous cooling-down of a melted sample is a
separate rather complex problem. On the
other hand, using the net method, it is pos-
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Fig. 2. The crystallization speed V as a func-
tion of time ¢ for different values of the
temperature field displacement acceleration
a, (um/s?): 1.72 (a), 17.2 (b), 172 (c). Lines
1, 2 present the analytical and numerical cal-
culations, respectively; 3, the temperature
field displacement speed.

sible to select a function G(¢#) which, being
substituted into the problem statement,
would provide the solution agreeing satis-
factorily with experimental data.

As a trial function, very efficient is
found to be the linear in time one

G(H)=G,, - bt, (7)
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Fig. 3. Temperature gradient G at the phase
interface (1-3) and crystallization speed V (4-
6) as functions of time ¢ at different values
of temperature gradient reduction speed, b
[K/(cm-+s)]: 0.119 (1, 4), 0.167 (2, 5), 0.295
(3, 6). The individual points refer to the ex-
perimental V(t) dependence [4].

where Gy = 10 K/cm and b is a certain rate
of temperature gradient decrease. Here, two
adjustable parameters are available, namely,
a,, and b. However, using the condition the
calculated V{(#) cruves should pass the first ex-
perimental point (Fig. 3), the number of pa-
rameters to be varied can be reduced to one.

It is seen from Fig. 8 that the uniform
reduction of the temperature gradient at
the crystallization front (curves 1-3) results
in a dome-shaped V() dependence (curves
4-6). In this case, the V(t) maximum for
each specific b value is approximately above
the intersection point of the G(¢) curve with
the abscissa axis. It follows therefrom that
to attain the nonmonotonous behavior of
the crystallization speed, not a simply re-
duction but a rather significant reduction
of the temperature gradient is necessary.

By fitting the G(¢) line slope, it is possi-
ble to provide that the calculated V(#) curve
will pass the first two experimental points
(curve 6 in Fig. 3, curve 3 in Fig. 4). In this
case, the parameters will take the values a,, =
2.49 um/s? and b = 0.295 K/(cm-s). If the
temperature gradient at the next section
(between the 20d and 8 points) will be pre-
sented by the same formula (7) but with
other coefficients, the V{(¢) curve will pass
three experimental points (with abscissas
14, 24, and 34 s). In this case, the tempera-
ture gradient takes the form of a continu-
ous piecewise linear function:
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Fig. 4. The crystallization speed V (3, 4) as a
function of time ¢ calculated using the linear
(1) and piecewise linear (2) time dependence
of temperature gradient G. Individual points
refer to the experimental V(¢) dependence [4].

Gy - |10~ 0.205¢ at 0 <t <24,
2.92 — 0.258(t — 24) at 24 <t <34. (8

Here, the time and temperature gradient
are presented in seconds and K/cm units,
respectively. It is obvious that any number
of points can be joined in that manner, what
is demonstrated in Fig. 4. A knee in curve 2
answers to each experimental point in curve 4
(Fig. 4), beginning from the 274 one.

It is seen from Fig. 4 that the broken
line of the temperature gradient time de-
pendence curve 2, Fig. 4) constructed using
the experimental results drops in the region
of negative values and behaves nonmono-
tonously. Such a behavior of the calculated
G(t) function may be connected first of all
with imperfection of the model selected. In
fact, when formulating the problem, we have
assumed that the heat conductivity coeffi-
cients are the same in the liquid and solid
phases, while such an assumptions may be too
rough at small temperature gradients.

Fig. 5 presents the distribution curves of
indium impurity in tin melt calculated for
different moments of crystallization. The
binary system liquidus lines in C-xx coordi-
nates are presented for the same moments
[3]. With regard to the temperature field
(1), taking (8) into account, those lines an-
swer to the expression

G(t
CL=CO, )+ #)x (9)
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Fig. 5. Dependences of indium concentration
C in the tin melt on the distance x from the
phase interface for different time moments ¢
after the crystallization onset (s): 14 (1), 21
(2), 30 (3). 4, 5, 6 are the liquidus lines in
C-x coordinates.

Since the slope of lines (9) reduces in time,
the concentration overcooling (CO) zone
width x. increases, and faster than at con-
stant temperature gradient [6] at that. That
width for each time moment is seen to be
defined by the intersection of C(x,t) and Cp,
lines.

In a different way, the x,. value can be
estimated only by comparing the instantane-
ous crystallization speed with a certain
speed at which the CO zone arises in the
melt. It is known [8] that in the steady
crystallization regime, that speed is so-
called critical speed

EGD

V.= (k- mCy’ (10)
It is determined in experiment from the
first violation (pox-like) of the phase inter-
face smoothness. The V, value as a certain
reference seems to have sense in the case of
non-stationary crystallization, too. In that
case, however, it is a function of time (due to
the G(t) dependence) (Table 2). In general, the
moment ¢, when the CO arises in the melt can
be determined using the equality

C,(0, t,) = G(nic), v

In a transient process with accelerated tem-
perature field displacement, it is just the
crystallization speed V., (Table 2) (exceed-
ing the V, by a factor of about 1/£) [6] that
corresponds to the above-mentioned mo-
ment.
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Table 2. The crystallization speed V, in-
dium concentration at the phase interface
at the melt side C(0,¢), temperature gradi-
ent G, critical crystallization speeds V,,
V., and the concentration overcooling zone
width x, calculated for the time moment ¢
after the solidification onset of the tin-in-
dium melt.

t, s vV, [C@O,t)| G, Ve Vear X
um/s | % |K/em|pum/s | um/s | um/s
0 0 1 10 3.54 | 5.90 0
8 3.20 | 1.04 | 7.64 | 2.70 | 4.62 0
11 4.70 | 1.06 | 6.76 | 2.39 | 4.12 67
24 9.28 | 1.18 | 2.92 | 1.03 | 1.85 | 1108

30 | 9.47 | 1.22 | 1.37 |0.484|0.882| 2867

It is seen from Table 2 that the crystal-
lization speed in the example under consid-
eration becomes higher than V, at 8th gec-
ond after the solidification begins. The CO
zone, however, arises at the 11tF second
only, when V(t)>V,,. At t = 24 s, the crys-
tallization speed exceeds the critical value
V.. by a factor of 5; according to data from
[8] (though obtained in steady regime) that
must result in a developed cellular struc-
ture of the phase interface. Taking into ac-
count the fact that the interface of the so-
lidifying tin-indium alloy remained smooth
for 120 s, the importance of the result ob-
tained in [4] is well understandable.

The following conclusions can be drawn
from the calculations carried out here. The
transition from the smooth interface to an-
other structure requires a certain energy
barrier to be overcome. Indeed, the forma-
tion of a more developed structure causes
an additional interface area. Thus, when
studying the binary melt solidification prob-
lem, the time factor is to be taken into
account among others. By the way, the con-
tradictions in literature data on the problem
may be connected to the fact that the time
factor was no taken into account when the
data were obtained.
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Kpucranizanisa 0iHapHOTro po3mjaBy NPH CIIOHTAHHOMY
OXOJIOMKEeHHI YaCTKOBO PO3ILJIABJIEHOTO 3pa3Ka

C.B.Bapannuk, B.H.Kaniwes

MeTtozmom ciToKk y pamMKaxX OJHOBUMIpHOI HecTallioHapHOI MoOZeJi TBepAiHHA PO3B’SI3aHO
3aJauy Opo audysiio JOMINIKK y po3miaBi, AKUNM KPUCTANIZyeTbCA y TeMIepaTypHOMY IIOJi,
fAKe IepeMilyeTbcsl PiBHOMipHO-TIPUCKOPEHO 3 I'Pafi€eHTOM TeMIlepaTypu, II0 3MeHIIYEThCA
3 yacoM. IlokasaHo, IIT0 3MeHIIEHHA I'paJieHTa TeMIepaTypu y 3raJaHoMy Npolleci cipuyu-
Hf€ HEMOHOTOHHY IIOBEJiHKY UYacoBOi 3aJIe’KHOCTI IIBUIKOCTI KpucTaisalfii, Imo ys3Ton-
JKYETHCA 3 BiIOMUMU €KCIepUMEeHTAJIbHUMU TaHUMMU.
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