Funct. Mater. 2013; 20 (1): 5-9.

http://dx.doi.org/10.15407/fm20.01.005

Enhanced pinning in high-temperature superconducting cuprate single crystals at low magnetic field

V.Yu.Monarkha, Yu.A.Savina, V.P.Timofeev

B.Verkin Institute for Low Temperature Physics & Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., 61103 Kharkiv, Ukraine

Abstract: 

Low density flux dynamics in Nd based cuprate (NdBa2Cu3O7–x) HTSC single crystals trapped in ≈1 Oe range DC magnetic fields were investigated for the first time. Complex measurements of time, temperature and field dependence of magnetization were performed. Using the results obtained and the Anderson-Kim model the normalized magnetization relaxation rate S and the averaged effective pinning potential U were calculated. We show a significant increase in the effective pinning potential in comparison with measurements performed in high magnetic fields for similar cuprate single crystals formerly. In a wide enough range of temperatures close to Tc (0.72≤ T/Tc ≤ 0.93) it has been shown that the doping of NdBa2Cu3O7–x single crystals with calcium atoms leads to an increase of the averaged effective pinning potential with an insignificant decreasing of the critical temperature.

References: 

1. R.Vovk, Z.F.Nazyrov, M.A.Obolenskii et al., Functional Materials, 18, 423 (2011).

2. A.Palau, C.Monton, V.Rouco et al., Phys. Rev. B, 85, 012502 (2012). http://dx.doi.org/10.1103/PhysRevB.85.012502

3. V.P.Timofeev, A.A.Shablo, V.Yu.Monarkha, Fiz. Nizk. Temp. 38, 39 (2012) [in Russian]; V.P.Timofeev, A.A.Shablo, V.Yu.Monarkha, Low Temp. Phys., 38, 31 (2012). http://dx.doi.org/10.1063/1.4733681

4. Y.Yeshurun, A.P.Malozemoff, A.Shaulov, Rev. Mod. Phys., 68, 911 (1996). http://dx.doi.org/10.1103/RevModPhys.68.911

5. A.V.Finkel, A.M.Bovda, V.V.Derevyanko et al., Functional Materials, 19, 109 (2012).

6. G.A.Jorge, E.Rodriguez, Phys. Rev. B, 61, 103 (2000). http://dx.doi.org/10.1103/PhysRevB.61.103

7. I.A.Rudnev, B.P.Mikhaylov, P.V.Bobin, Pisma v ZhTF, 31, 88 (2005).

8. P.J.Li, Z.H.Wang, H.Zhang et al., Supercond. Sci. Technol., 19, 392 (2006). http://dx.doi.org/10.1088/0953-2048/19/4/025

9. D.Miu, L.Miu, G.Jakob, H.Adrian, Physica C, 460–462, 1243 (2007). http://dx.doi.org/10.1016/j.physc.2007.04.069

10. M.A.Obolenskii, A.V.Bondarenko, V.I.Beletskii et al., Functional Materials, 2, 401 (1995).

11. Y.Abulafia, A.Shaulov, Y.Wolfus et al., Phys. Rev. Lett., 75, 2404 (1995). http://dx.doi.org/10.1103/PhysRevLett.75.2404

12. I.L.Landau, H.R.Ott, Phys. Rev., B 63, 184516 (2001). http://dx.doi.org/10.1103/PhysRevB.63.184516

13. R.Vovk, G.Ja.Hadzai, M.A.Obolenskii, Low Temp. Phys., 38, 255 (2012). http://dx.doi.org/10.1063/1.3693587

Current number: