Funct. Mater. 2013; 20 (1): 20-28.

Optical parameters of the film naturally formed on the surface of cadmium telluride single crystals

V.A.Odarych[1], L.V.Poperenko[1], I.V.Yurgelevych[1], V.A.Gnatyuk[2], Toru Aoki[3]

[1]Faculty of Physics of T.Shevchenko National University of Kyiv, 4 Academician Glushkov Ave., 03127 Kyiv, Ukraine
[2]V.Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, Prospekt Nauky 41, 03028 Kyiv, Ukraine
[3]Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Japan


Ellipsometric study of different surfaces of CdTe single crystals was carried out at a light wavelength of 632.8 nm. CdTe(110) crystals with cleaved surfaces after long time storage under ambient air conditions, Cd- and Te-terminated faces of (111) oriented CdTe crystals aged at room temperature in air during different times and samples chemically etched in a Br–HBr solution were investigated. The refraction and absorption indexes, and thickness of the films formed on the surface of different samples were obtained and the nature of these films was discussed. The ellipsometric measurement data have been well described by the two-layer model of a reflective system which includes (1) internal presumably pure Te layer with thickness of a few monoatomic layers and (2) external layer, probably Cd or Te oxide film of thickness from 5 to 10 nm depending on the time of storage in air.


1. E.U. Patent 0,218,135 (1987).

2. U.S. Patent 3,979,322 (1976).

3. R.F. Patent 2,426,701 (2011).

4. U.S. Patent 5526369A (1996).

5. U.S. Patent 20,060,128,549 (2008).

6. U.S. Patent 7,435,695B2 (2008).

7. U.S. Patent 4,075,120A (1978).

8. R.D.Shannon, R.X.Fischer, Phys. Rev. B, 73, 235111 (2006).

9. G.Walter, U.Hoppe, A.Barz et al., J. Non-Cryst. Solids., 263-264, 48 (2000).

10. A.Paleari, V.N.Sigaev, N.V.Golubev et al., Mater. Chem. Phys., 128, 12 (2011).

11. V.Ya.Gayvoronsky, L.A.Golovan, M.A.Kopylovsky et al., Quant. Electron. 41, 257 (2011).

12. A.V.Uklein, A.S.Popov, V.V.Multian et al., NanoScale Res. Lett., 10, 102 (2015).

13. V.E.Diyuk, A.N.Zaderko, K.I.Veselovska, V.V.Lisnyak, J. Thermal Anal. Calorim., 120, 1665 (2015).

14. ASTM D854-14 (2014).

15. I.V.Dimitrov, S.Sakka, J. Appl. Phys., 79, 1736 (1996).

16. J.A.Duffy, M.D.Ingram, J. Am. Chem. Soc., 93, 6448 (1971).

17. L.S.Dent-Glasser, J.A.Duffy, J. Chem. Soc., Dalton Trans., 10, 2323 (1987).

18. J.A.Duffy, J. Phys. Chem., 110, 13245 (2006).

19. Y.Waseda, J.M.Toguri, The Structure and Properties of Oxide Melts: Application of Basic Science to Metallurgical Processing, World Scientific Publishers, Singapore (1998).

20. V.Ya.Gayvoronsky, A.S.Popov, M.S.Brodyn et al., in: Nanocomposites, Nanophotonics, Nanobiotechnology and Applications, Edition: Springer Proceedings in Physics 156, Springer, Cham-Heidelberg-NY (2015), p.147.

21. V.Ya.Gayvoronsky, M.A.Kopylovsky, M.S.Brodyn et al., in: Nanomaterials Imaging Techniques, Surface Studies and Applications, Edition: Springer Proceedings in Physics 146, Springer, New York, USA (2013), p.349.

22. A.B.P.Lever, Inorganic Electronic Spectroscopy. Studies in Physical and Theoretical Chemistry, Elsevier, Amsterdam (1986).

23. J.J.Garcia Sole, L.E.Bausa, D.Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, Wiley, Chichester (2005).

24. L.L.Velli, C.P.E.Varsamis, E.I.Kamitsos et al., Phys. Chem. Glasses, 46, 178 (2005).

25. H.Takebe, Y.Nageno, K.Morinaga, J. Am. Ceram. Soc. 77, 2132 (1994).

Current number: