Funct. Mater. 2013; 20 (1): 68-74.

http://dx.doi.org/10.15407/fm20.01.068

Impedance spectroscopy of composites based on porous silicon and silica aerogel for sensor applications

A.Yu.Karlash, G.V.Kuznetsov, Yu.S.Milovanov, V.A.Skryshevsky

Institute of High Technologies, National T. Shevchenko University of Kyiv, 64 Volodymyrs`ka Str., 01601 Kyiv, Ukraine

Abstract: 

Electrophysical and optical properties of heterogeneous composite systems based on nanosilicon (nc–Si) and silica aerogel (SiOx) powders have been investigated using impedance spectroscopy and FTIR spectroscopy methods. In FTIR transmittance spectra the presence of vibration modes of hydroxyl groups covering the internal surface of SiOx matrix as well as associated Si–OH groups has been revealed that should determine the sensing behavior of considered composites mainly under water treating. Based on impedance measurements possible mechanisms of charge carrier transport have been proposed. It was shown that the main process in carrier transport of pressed SiOx/nc–Si composite structures is the percolation tunneling of charge carriers through the silicon nanoclusters system. The dynamic interaction of composite structures with water molecules and pure ethyl alcohol has been investigated. It was revealed that desorption kinetics of SiOx/nc–Si nanocomposites are characterized by higher desorption rate compared to SiOx samples. The relative change of resistance value under water treating ΔR/R ≅ 0.99 was almost similar for all investigated samples that confirmed the crucial role of oxide matrix in adsorption-desorption processes of considered composite structures. It was concluded that such sensing behavior could be utilized for construction the chemical sensors of humidity and alcohol based on porous SiOx and SiOx/nc–Si nanocomposites.

References: 

1. C.C.Koch, Nanostructured Materials: Processing, Properties and Applications, William Andrew Inc, Norwich, NY (2007).

2. X.X.Wang, J.G.Zhang, L.Ding et al., Phys. Rev. B, 72, 195313 (2005). http://dx.doi.org/10.1103/PhysRevB.72.195313

3. K.Seino, F.Bechstedt, P.Kroll, Nanotechnology, 20, 135702 (2009). http://dx.doi.org/10.1088/0957-4484/20/13/135702

4. I.V.Antonova, V.A.Skuratov, J.Jedrzejewski et al., Semiconductors, 44, 501 (2010). http://dx.doi.org/10.1134/S1063782610040135

5. A.Yu.Karlach, G.V.Kuznetsov, S.V.Litvinenko et al., Semiconductors, 44, 1387 (2010). http://dx.doi.org/10.1134/S1063782610100179

6. G.Cantele, E.Degoli, E.Luppi et al., Phys. Stat. Solidi C, 2, 3263 (2005). http://dx.doi.org/10.1002/pssc.200461139

7. J.M.Lauerhaas, M.J.Sailor, Science, 261, 1567 (1993). http://dx.doi.org/10.1126/science.261.5128.1567

8. E.J.Lee, J.S.Ha, M.J.Sailor, Mat. Res. Soc. Symp. Proc., 358, 358 (1995).

9. E.Traversa, Sensor. Actuator. B, 23, 135 (1995). http://dx.doi.org/10.1016/0925-4005(94)01268-M

10. C.-T.Wang, C.-L.Wu, Thin Solid Films, 496, 658 (2006). http://dx.doi.org/10.1016/j.tsf.2005.09.001

11. P.M.Faia, C.S.Furtado, A.J.Ferreira, Sensor. Actuator. B, 107, 353 (2005). http://dx.doi.org/10.1016/j.snb.2004.10.021

12. E.Barsoukov, Impedance Spectroscopy: Theory, Experiment, and Applications, Macdonald J.R. Willey: N.Y. (2005). http://dx.doi.org/10.1002/0471716243

13. A.J.Bard, L.R.Faulkner, Electrochemical Methods. Fundamentals and Applications, Willey: N.Y. (2001).

14. M.R.Ayers, A.J.Hunt, J. Non-Cryst. Solids, 285, 123 (2001). http://dx.doi.org/10.1016/S0022-3093(01)00442-2

15. A.Yu.Karlash, G.V.Kuznetsov, V.A.Skryshevsky et al., J. Phys. D: Appl. Phys., 43, 335405 (2010). http://dx.doi.org/10.1088/0022-3727/43/33/335405

16. S.Litvinenko, E.Garrone, D.Barbier et al., Intern. J. Hydrogen Energy, 35, 6773 (2010). http://dx.doi.org/10.1016/j.ijhydene.2010.04.041

17. V.P.Tolstoy, I.V.Chernyshova, V.A.Skryshevsky. Handbook of Infrared Spectroscopy of Ultrathin Films, Willey: N.Y. (2003). http://dx.doi.org/10.1002/047123432X

18. B.Stuart, Infrared Spectroscopy: Fundamentals and Applications. Willey: N.Y. (2004). http://dx.doi.org/10.1002/0470011149

19. M.Nogami, R.Nagao, Cong Wong, J. Phys. Chem. B, 102, 5772 (1998). http://dx.doi.org/10.1021/jp981059j

20. Chao Cao, Yao He, J.Torras et al., J. Chem. Phys., 126, 211 (2007).

21. N.N. Kononov, S.G. Dorofeev, A.A.Ishchenko et al., Semiconductors, 45, 1068 (2011). http://dx.doi.org/10.1134/S1063782611080124

22. N.A.Poklonski, N.I.Gorbachuk, D.Aleinikova, Phys. Solid State, 53, 462 (2011). http://dx.doi.org/10.1134/S1063783411030231

23. R.J.Mortimer, R.J.Mayers, Sensor. Actuator. B, 128, 24 (2007). http://dx.doi.org/10.1016/j.snb.2007.05.040

24. K.M.S.Khalil, S.A.Makhlouf, Sensor. Actuator. A, 148, 39 (2008). http://dx.doi.org/10.1016/j.sna.2008.06.035

25. G.Di Francia, A.Castaldo, E.Massera et al., Sensor. Actuator. B, 111–112, 135 (2004).

26. V.A.Moshnicov, I.Gracheva, A.S.Lenshin et al., J. Non-Cryst. Solids, 358, 590 (2012). http://dx.doi.org/10.1016/j.jnoncrysol.2011.10.017

Current number: