Funct. Mater. 2013; 20 (2): 153-157.

http://dx.doi.org/10.15407/fm20.02.153

Dispersions of carbon nanotubes in cholesteric liquid crystals: features of aggregate formation

L.N.Lisetski[1], S.S.Minenko[1], A.P.Fedoryako[1], N.I.Lebovka[2], M.S.Soskin[3]

[1]Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine
[2]F.Ovcharenko Institute of Biocolloidal Chemistry, National Academy of Sciences of Ukraine, 42 Vernadsky Prosp., 03142 Kyiv, Ukraine
[3]Institute of Physics, National Academy of Sciences of Ukraine,46 Nauky Pr., 03028 Kyiv, Ukraine

Abstract: 

For liquid crystal dispersions of carbon nanotubes (CNT), experimental data on time stability of their characteristics were obtained by three different methods (optical transmission vs. temperature, electric conductivity vs. time, and electric conductivity vs. voltage in conditions of Freedericksz transition). The results clearly suggest that induction of helical twisting in the nematic matrix substantially slows down the process of CNT aggregation, with cholesterol derivatives being more efficient as compared with non-steroid optically active dopants. This allows considering such dispersions as promising functional materials with enhanced time stability.

References: 

1. J.P.F.Lagerwall, G.Scalia, J. Mater. Chem., 18, 2890 (2008). http://dx.doi.org/10.1039/b802707b

2. M.Rahman, W.Lee, J. Phys. D:Appl. Phys., 42, 063001 (2009). http://dx.doi.org/10.1088/0022-3727/42/6/063001

3. L.Dolgov, O.Kovalchuk, N.Lebovka, S.Tomylko, O.Yaroshchuk, in: Carbon Nanotubes, ed. by J.M.Marulanda, InTech Education and Publishing, Vukovar, Croatia (2010), p.451.

4. Y.A.Garbovskiy, A.V.Glushchenko, Solid State Phys., 62, 1 (2011). http://dx.doi.org/10.1016/B978-0-12-374293-3.00001-8

5. L.N.Lisetski, S.S.Minenko, A.P.Fedoryako, N.I.Lebovka, Physica E, 41, 431 (2009). http://dx.doi.org/10.1016/j.physe.2008.09.004

6. A.I.Goncharuk, N.I.Lebovka, L.N.Lisetski, S.S.Minenko, J. Phys. D: Appl.Phys., 42, 165411 (2009). http://dx.doi.org/10.1088/0022-3727/42/16/165411

7. S.S.Minenko, L.N.Lisetski, A.I.Goncharuk, N.I.Lebovka, V.V.Ponevchinsky, M.S.Soskin, Functional Materials, 17, 454 (2010).

8. L.N.Lisetski, S.S.Minenko, V.V.Ponevchinsky, V.V.Ponevchinsky, M.S.Soskin, A.I.Goncharuk,N.I.Lebovka, Mat. Sci. Eng. Technol., 42, 5 (2011).

9. L.N.Lisetski, A.M.Chepikov, S.S.Minenko, N.I.Lebovka, M.S.Soskin, Functional Materials, 18, 148 (2011).

10. L.N.Lisetski, N.I.Lebovka, S.V.Naydenov, M.S.Soskin, J. Mol. Liq., 164, 143 (2011). http://dx.doi.org/10.1016/j.molliq.2011.04.020

11. V.V.Ponevchinski, A.I.Goncharuk, S.S.Minenko, L.N.Lisetski, N.I.Lebovka Nonlin. Opt. and Quant. Opt., 43, 281 (2012).

12. S.Schymura, M.Kuhnast, V.Lutz et al., Adv. Funct. Mat., 20, 3350 (2010). http://dx.doi.org/10.1002/adfm.201000539

13. M.Kuhnast, C.Tschierske, J.Lagerwall, Chem. Commun., 46, 6989 (2010). http://dx.doi.org/10.1039/c0cc02353a

14. Y.Li, Y.Y.Huang, E.M.Terentjev, Langmuir, 27, 13254 (2011). http://dx.doi.org/10.1021/la202790a

15. W.Tie, G.H.Yang, S.S.Bhattacharyya et al., J. Phys. Chem. C, 115, 21652 (2011). http://dx.doi.org/10.1021/jp206961a

16. S.Schymura, J.Lagerwall, in: 37. Arbeitstagung Flussigkristalle, Stuttgart (2009), p.33.

17. O.Koysal, Synth. Metals, 160, 1097 (2010). http://dx.doi.org/10.1016/j.synthmet.2010.02.033

18. M.V.Yakemseva, I.V.Novikov, N.V.Usol′tseva, in: Zhidkie Kristally i ikh Prakticheskoe Ispol′zovanie, Ivanovo, Russia, 4, 98 (2010) [in Russian].

19. C.-K.Chang, S.-W.Chiu, H.-L.Kuo et al., Appl. Phys. Lett., 100, 043501 (2012). http://dx.doi.org/10.1063/1.3679680

20. L.N.Lisetski, S.S.Minenko, A.V.Zhukov et al., Mol. Cryst. Liq. Cryst., 510, 43 (2009).

21. A.M.Chepikov, S.S.Minenko, L.N.Lisetski, N.I.Lebovka, N.V.Usol′tseva, M.S.Soskin Functional Materials, 19, 343 (2012).

22. S.S.Minenko, A.I.Kocherzhyn, L.N.Lisetski, N.I.Lebovka, Functional Materials, 16, 319 (2009).

Current number: