Funct. Mater. 2013; 20 (4): 424-428.

http://dx.doi.org/10.15407/fm20.04.424

Pulse and quasi-static remagnetization peculiarities of Nd0.5Sr0.5MnO3 single crystal

V.T.Dovgii, A.I.Linnik, V.I.Kamenev, V.Yu.Tarenkov, S.L.Sidorov, B.M.Todris, V.I.Mikhailov, N.V.Davideiko, T.A.Linnik

Donetsk Institute for Physics and Engineering, National Academy of Sciences of Ukraine, 72 R.Luxemburg Str., 83114 Donetsk, Ukraine

Abstract: 

The hysteretic behavioral features of magnetization and resistance upon remagnetization under quasistatic (up to 9 T) and pulse (up to 14 T) magnetic fields have been investigated. The relaxation processes of magnetization and resistance after the effect of 9 T magnetic field have also been studied. The mechanism of remagnetization of the antiferromagnetic insulating-ferromagnetic metallic (AFM/I–FM/M) phases and the existence of high conductivity state of the sample after removal of the magnetizing field is proposed for low temperatures. The mechanism is caused by structural transition, which is induced by magnetic field (due to magnetostriction), and slow relaxation of the FM-phase (greater volume) to the equilibrium AFM-phase (smaller volume) after the field removal. Remagnetization of Nd0.5Sr0.5MnO3 single crystal under pulse field at low temperatures (18 K) has shown that time of the AFM/I→FM/M phase transition was lower than time of the return FM/M→AFM/I phase transition by 6 orders of magnitude.

References: 

1.M.Yu.Kagan, K.I.Kugel, UFN, 171, 577 (2001). http://dx.doi.org/10.3367/UFNr.0171.200106a.0577

2.Yu.A.Izyumov, Yu.N.Skryabin, UFN, 171, 121 (2001). http://dx.doi.org/10.3367/UFNr.0171.200102a.0121

3.E.L.Nagaev, Uspekhi Fiz. Nauk, 166, 833 (1996). http://dx.doi.org/10.3367/UFNr.0166.199608b.0833

4.E.L.Brosha, R.Mukundan, D.R.Brown et al., Sensors and Actuators, B 69, 171 (2000). http://dx.doi.org/10.1016/S0925-4005(00)00543-8

5.H.Kuwahara, Y.Tomioka, A.Asamitsu et al., Science, 270, 961 (1995). http://dx.doi.org/10.1126/science.270.5238.961

6.R.Kajimoto, H.Yoshizawa, H.Kawano et al., Phys.Rev.B, 60, 9506 (1999). http://dx.doi.org/10.1103/PhysRevB.60.9506

7.S.Zvyagin, H.Schwenk, B.Luthi et al., Phys.Rev.B, 62, R6104 (2000). http://dx.doi.org/10.1103/PhysRevB.62.R6104

8.Taka-hisa Arima, K.Nakamura, Phys.Rev.B, 60, R15013 (1999).

9.N.F.Mott, Metal-Insulator Transition, World Scientific, London (1974).

10.C.Ritter, R.Mahendiran, M.R.Ibarra et al., Phys.Rev.B, 61, R9229 (2000). http://dx.doi.org/10.1103/PhysRevB.61.R9229

11.R.Mahendiran, M.R.Ibarra, A.Maignan et al., Phys.Rev.Lett., 82, 2191 (1999). http://dx.doi.org/10.1103/PhysRevLett.82.2191

12.A.Bisvas, A.K.Raychaudhuri, A.Arulraj, C.N.R.Rao, Appl.Phys.A, 66, S1213 (1998). http://dx.doi.org/10.1007/s003390051329

Current number: