Funct. Mater. 2013; 20 (4): 434-437.

http://dx.doi.org/10.15407/fm20.04.434

Scintillation characteristics of deformed large-sized NaI crystals

V.V.Shlyakhturov, A.V.Gektin, A.Yu.Boyarintsev, V.I.Taranyuk

Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

The effect of plastic deformation on defect structure and functional parameters of NaI based crystals and scintillator NaI(Tl) in particular has been studied. Plastic flow modeling in decorated samples as well as in large size crystal blanks demonstrated significant non uniformity of the deformation map along the sample. Scintillation parameters (light output and energy resolution) are practically the same through the whole crystal volume. Post deformation scintillation parameters are similar to the single crystal ones. This phenomenon is typical for the wide range of temperature and deformation rates for this type of crystals.

References: 

1.D.J.Wisniewski, L.A.Boatner, J.S.Neal et al., IEEE Trans.Nucl.Sci., 55, 1501 (2008). http://dx.doi.org/10.1109/TNS.2008.919259

2.V.V.Nagarkar, S.R.Miller, V.Gelfandbein et al., Nucl.Instrum.Meth.Phys.Res.A, 652, 271 (2011). http://dx.doi.org/10.1016/j.nima.2010.08.039

3.A.Gektin, A.Lebedinskiy, in book: "Scintillation Materials. Engineering, Devices, Application", Kharkov, ISMA (2009) [in Russian].

4.P.Lecoq, A.Annenkov, A.Gektin et al., Inorganic Scintillators for Detector Systems. Physical Principles and Crystal Engineering. Ser.: Particle Acceleration and Detection, Springer, New York (2006).

5.N.J.Cherepy, Z.M.Seeley, S.A.Payne et al., IEEE Tran.Nucl.Sci., 60, 2330 (2013). http://dx.doi.org/10.1109/TNS.2013.2261826

6.Takayuki Yanagida, Kei Kamada, Yutaka Fujimoto et al., Opt.Mater., 35, 2480 (2013). http://dx.doi.org/10.1016/j.optmat.2013.07.002

7.http://www.detectors.saint-gobain.com/NaI(Tl)

8.B.C.Koepke, R.H.Anderson, R.J.Stokes, in: Deformation of Ceramic Materials, ed. by R.G.Brandt and R.E.Tressier, London (1975).

9.A.Yu.Boyarintsev, A.V.Gektin, V.A.Lotnik et al., Izvestiya Vysshikh Uchebnykh Zavedenii.Mater. Electron. Tekhn., 1, 28, (2004) [in Russian].

10.V.I.Goriletsky, V.A.Nemenov, L.G.Eidelman et al., J.Cryst. Growth, 52, 509 (1981). http://dx.doi.org/10.1016/0022-0248(81)90330-4

11.V.Taranyuk, A.Gektin, I.Kisil et al., J.Cryst. Growth, 318, 820 (2011). http://dx.doi.org/10.1016/j.jcrysgro.2010.11.089

12.I.I.Kisil, V.I.Taranyuk, S.V.Yaroslavkin, Functional Materials, 15, 600 (2008).

13.Yu.Boyarintsev, A.V.Gektin, L.M.Soifer et al., Izvestiya Vysshikh Uchebnykh Zavedenii.Mater. Electron. Tekhn., 1, 21, (2000) [in Russian].

14.A.V.Gektin, L.G.Eidelman, Fiz.Tverd.Tela, 24, 1467 (1982).

15.A.Yu.Boyarintsev, A.V.Gektin, V.V.Shlakhturov, Functional Materials, 13, 608 (2006).

16.A.V.Gektin, N.V.Shiran, V.Ia.Serebryanuy et al., Opt.Spectr., 72, 1061 (1992).

Current number: