Funct. Mater. 2013; 20 (4): 510-515.

http://dx.doi.org/10.15407/fm20.04.510

Pecularities of nanoparticle reflection from a barrier

M.A.Ratner[1], A.V.Tur[2], V.V.Yanovsky[1,3]

[1]STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave, 61001 Kharkiv, Ukraine
[2]Universite de Toulouse [UPS], CNRS, Institut de Recherche en Astrophysique et Planetologie, 9 ave du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France
[3]V.Karazin Kharkiv National University, Svobody Sq. 4, 61022 Kharkiv, Ukraine

Abstract: 

This work is devoted to molecular dynamics modelling of collision of nanoparticle having a small number of degrees of freedom with a structureless plain. It is established that velocity of nanoparticle after collision can exceed the initial one. The main system parameters, which determine nanoparticle behavior, are established.

References: 

1.A.I.Gusev, Nanomaterials, Nanostructures and Nanotechnologies, Fizmatlit, Moscow (2005) [in Russian].

2.V.V.Yanovsky, A.V.Tur, Yu.N.Maslovsky, J. Exper. Theor. Phys., 106, 187 (2008). http://dx.doi.org/10.1134/S1063776108010172

3.G.Schill, Catenanes, Rotaxane, and Knots, Academic Press, New York (1971).

4.B.W.Smith, M.Monthioux, D.E.Luzzi, Encapsulated C60 in Carbon Nanotubes, 396, 323 (1998).

5.M.Monthioux, Carbon, 40, 1809 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00102-1

6.F.Ercolessi, in: Proc.Spring College in Computational Physics, ICTP, Trieste (1997), p.19.

7.A.Shimizu, H.Tachikawa, Electrochimica Acta., 48, 1727 (2003). http://dx.doi.org/10.1016/S0013-4686(03)00152-X

8.R.Webb, M.Kerford, A.Way, I.Wilson, Nucl. Instrum. Meth. Phys. Res., B153, 284 (1999). http://dx.doi.org/10.1016/S0168-583X(99)00202-5

9.L.Verlet, Phys.Rev., 165, 201 (1967). http://dx.doi.org/10.1103/PhysRev.165.201

10.L.Verlet, Phys.Rev., 159, 98 (1967). http://dx.doi.org/10.1103/PhysRev.159.98

11.H.C.Andersen, J.Comput.Phys., 52, 24 (1983). http://dx.doi.org/10.1016/0021-9991(83)90014-1

Current number: