Funct. Mater. 2013; 20 (4): 516-522.

http://dx.doi.org/10.15407/fm20.04.516

Dipole-exchange spin waves in a periodically layered ferromagnetic nanotube

Y.I.Gorobets[1], V.V.Kulish[2]

[1]Institute of Magnetism, National Academy of Sciences of Ukraine, 36-b Vernadskogo Str., 03142 Kyiv, Ukraine
[2]Department of General and Experimental Physics, National Technical University of Ukraine "Kyiv Polytechnic Institute",37 Peremogy Ave., 03056 Kyiv, Ukraine

Abstract: 

Spin waves in a periodically layered ferromagnetic nanotube (nanotube magnetophotonic crystal) are investigated.External magnetic field is considered to be applied parallel to the nanotube symmetry axis. The linearized Landau-Lifshitz equation in magnetostatic approximation is used, taking into account the magnetic dipole-dipole interaction, theexchange interaction and the anisotropy effects. As a result, the local dispersion relation (for uniform nanotube sections), the radial wave number spectrum and the longitudinal quasi-wave number spectrum (for the entire nanotube) for spin waves in the above-described nanotube are found. From the radial wave number spectrum, limitations on the transverse-angular modes are defined. The longitudinal quasi-wave number spectrum in the "effective medium" limit is shown to have the same form as for a uniform nanotube (with averaged parameters).

References: 

1.V.V.Kruglyak, S.O. Demokritov, D.Grundler, J.Phys.D:Appl.Phys., 43, 264001 (2010). http://dx.doi.org/10.1088/0022-3727/43/26/264001

2.R.P.van Stapele, F.J.A.M.Greidanus, J.W.Smits, J.Appl.Phys., 57, 1282 (1985). http://dx.doi.org/10.1063/1.334527

3.B.A.Kalinikos, N.G.Kovshikov, A.N.Slavin, J.Appl.Phys., 69, 5712 (1991). http://dx.doi.org/10.1063/1.347896

4.M.Bauer, O.Buttner, S.O.Demokritov et al., Phys.Rev.Lett., 81, 3769 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.3769

5.K.Yu.Guslienko, A.N.Slavin, J.Appl.Phys., 87, 6337 (2000). http://dx.doi.org/10.1063/1.372698

6.F.G.Aliev, J.F.Sierra, A.A.Awad et al., Phys.Rev.B, 79, 174433 (2009). http://dx.doi.org/10.1103/PhysRevB.79.174433

7.J.Jorzick, S.O.Demokritov, C.Mathieu et al., Phys.Rev.B, 60, 15194 (1999). http://dx.doi.org/10.1103/PhysRevB.60.15194

8.R.Arias, D.L.Mills, Phys.Rev.B, 63, 134439 (2001). http://dx.doi.org/10.1103/PhysRevB.63.134439

9..R.Skomski, M.Chipara, D.J.Sellmyer, J.Appl.Phys., 93, 7604 (2003). http://dx.doi.org/10.1063/1.1558691

10.P.C.Fletcher, C.Kittel, Phys.Rev., 120, 2004 (1960). http://dx.doi.org/10.1103/PhysRev.120.2004

11.S.M.Cherif, Y.Roussigne, C.Dugautier et al., J.Magn.Magn.Mater., 222, 337 (2000). http://dx.doi.org/10.1016/S0304-8853(00)00581-3

12.U.Ebels, J.-L.Duvail, P.E.Wigen et al., Phys.Rev.B, 64, 144421 (2001). http://dx.doi.org/10.1103/PhysRevB.64.144421

13.A.Encinas-Oropesa, M.Demand, L.Piraux et al., Phys.Rev.B, 63, 104415 (2001). http://dx.doi.org/10.1103/PhysRevB.63.104415

14.M.R.Freeman, B.C.Choi, Science, 294, 1484 (2001). http://dx.doi.org/10.1126/science.1065300

15.Y.Zhang, H.Dai, Appl.Phys.Lett., 77, 3015 (2000). http://dx.doi.org/10.1063/1.1324731

16.Y.Zhang, N.W.Franklin, R.J.Chen et al., Chem.Phys.Lett., 35, 331 (2000).

17.K.Nielsch, F.J.Castano, C.A.Ross et al., J.Appl.Phys., 98, 034318 (2005). http://dx.doi.org/10.1063/1.2005384

18.Y.C.Sui, R.Skomski, K.D.Sorge, D.J.Sellmyer, Appl.Phys.Lett., 84, 1525 (2004). http://dx.doi.org/10.1063/1.1655692

19.K.Nielsch, F.J.Castano, S.Matthias et al., Adv. Engin. Mater., 7, 217 (2005). http://dx.doi.org/10.1002/adem.200400192

20.P.Landeros, S.Allende, J.Escrig et al., Appl.Phys.Lett., 90, 102501 (2007). http://dx.doi.org/10.1063/1.2437655

21.Z.K.Wang, H.S.Lim, H.Y.Liu et al., Phys.Rev.Lett., 94, 137208 (2005). http://dx.doi.org/10.1103/PhysRevLett.94.137208

22.W.Sharif, S.Shamaila, M.Ma et al., Appl.Phys.Lett., 92, 032505 (2008). http://dx.doi.org/10.1063/1.2836272

23.X.F.Salem, X.F.Searson, K.W.Leong, Nat.Mater., 2, 668 (2008). http://dx.doi.org/10.1038/nmat974

24.K.W.Berry, K.W.Curtis, J.Phys.D:Appl.Phys., 36, R198 (2003). http://dx.doi.org/10.1088/0022-3727/36/13/203

25.H.Leblond, V.Veerakumar, Phys.Rev.B, 70, 134413 (2004). http://dx.doi.org/10.1103/PhysRevB.70.134413

26.V.Gonzalez, P.Landeros, P.Nunez, J.Magn.Magn.Mater., 322, 530 (2010). http://dx.doi.org/10.1016/j.jmmm.2009.10.010

27.M.Inoue, H.Uchida, K.Nishimura, P.B.Lim, J.Mater.Chem., 16, 678 (2006). http://dx.doi.org/10.1039/B511434A

28.M.Inoue, R.Fujikawa, A.Baryshev et al., J.Phys.D:Appl.Phys., 39, R151 (2006). http://dx.doi.org/10.1088/0022-3727/39/8/R01

29.M.Inoue, K.Arai, T.Fujii et al., J.Appl.Phys., 85, 5768 (1999). http://dx.doi.org/10.1063/1.370120

30.H.Kato, T.Matsushita, A.Takayama et al., Opt.Commun., 219, 271 (2003). http://dx.doi.org/10.1016/S0030-4018(03)01283-5

31.V.V.Kruglyak, R.J.Hicken, A.N.Kuchko et al., J.Appl.Phys., 98, 014304 (2005). http://dx.doi.org/10.1063/1.1935764

32.V.V.Kruglyak, A.N.Kuchko, Physica B, 339, 130 (2003). http://dx.doi.org/10.1016/j.physb.2003.08.124

33.S.A.Nikitov, P.Tailhades, C.S.Tsai, J.Magn.Magn.Mater., 236, 320 (2001). http://dx.doi.org/10.1016/S0304-8853(01)00470-X

34.C.Elachi, IEEE Trans. Magn., MAG-11, 36 (1975). http://dx.doi.org/10.1109/TMAG.1975.1058546

35.Yu.V.Gulyaev, A.A.Nikitov, Doklady Physics, 46, 687 (2001). http://dx.doi.org/10.1134/1.1415579

36.A.I.Akhiezer, V.G.Bar′yakhtar, S.V.Peletminskiy, Spin Waves, North-Holland, Amsterdam (1968).

37.V.V.Kruglyak, A.N.Kuchko, V.I.Finokhin, Phys.Solid State, 46, 867 (2004). http://dx.doi.org/10.1134/1.1744963

Current number: