Funct. Mater. 2014; 21 (1): 5-9.

http://dx.doi.org/10.15407/fm21.01.005

Structure lamination influence on the magnetic flux dynamics in YBa2Cu3O7-δ single crystals

D.A.Lotnik, A.V.Sokolov, R.V.Vovk

Kharkiv National University, 4 Svoboda Sq., 61022 Kharkiv, Ukraine

Abstract: 

Dynamics of the vortex matter in YBa2Cu3O7-δ single crystal with unidirectional twin boundaries was studied experimentally in a wide range of velocities of the magnetic flux in the tilted magnetic field. It was determined that with orientation of the magnetic field vector in the locality of ab-plane, the dynamics of the magnetic flux near the melting temperature of the vortex lattice can be described by the Kim-Anderson model and under temperature lowering by the theory of collective pinning on small-scale defects or by the vortex glass model. The intrinsic pinning caused by the layered crystal structure of the material has an impact on the dynamics of magnetic flux and this effect increases with the temperature decreasing.

References: 

1. A.A.Abrikosov, Usp. Fiz. Nauk, 168, 683 (1998). http://dx.doi.org/10.3367/UFNr.0168.199806i.0683

2. A.Chroneos, I.L.Goulatis, R.V.Vovk, Acta Chim. Slovenica, 54, 179 (2007).

3. R.V.Vovk, N.R.Vovk, O.V.Shekhovtsov et al., Supercond. Sci. Technol., 26, 085017 (2013). http://dx.doi.org/10.1088/0953-2048/26/8/085017

4. R.A.Klemm, A.Luther, M.R.Beasley, Phys. Rev. B, 12, 877 (1975). http://dx.doi.org/10.1103/PhysRevB.12.877

5. V.V.Schmidt, The Physics of Superconductors, Springer-Verlag, Berlin-Heidelberg (1997).

6. L.G.Aslamazov, A.I.Larkin, Phys. Lett., 26A, 238 (1968). http://dx.doi.org/10.1016/0375-9601(68)90623-3

7. M.A.Obolenskii, R.V.Vovk, A.V.Bondarenko, N.N.Chebotaev, Low Temper. Phys., 32, 571 (2006). http://dx.doi.org/10.1063/1.2215373

8. D.Feinberg, C.Villard, Phys. Rev. Lett., 65, 919 (1990). http://dx.doi.org/10.1103/PhysRevLett.65.919

9. D.H.Chung, M.Charparale, M.J.Naughton, in: Proc. VIth Conference on Superconductivity, September 1992, Buffalo (AIP), New York (1993).

10. J.C.Martinez et al., Phys. Rev. Lett., 69, 2276 (1992). http://dx.doi.org/10.1103/PhysRevLett.69.2276

11. A.V.Bondarenko, V.A.Shklovskij, M.A.Obolenskii et al, Phys. Rev. B, 58, 2445 (1998). http://dx.doi.org/10.1103/PhysRevB.58.2445

12. A.V.Bondarenko, A.A.Prodan, M.A.Obolenskii et al., Low Temper. Phys., 27, 339 (2001). http://dx.doi.org/10.1063/1.1374717

13. A.V.Bondarenko, A.A.Prodan, M.A.Obolenskii et al., Physica C, 317-318, 655 (1999). http://dx.doi.org/10.1016/S0921-4534(99)00166-5

14. W.K.Kwok et al., Phys. Rev. Lett., 69, 3370 (1992). http://dx.doi.org/10.1103/PhysRevLett.69.3370

15. R.V.Vovk, M.A.Obolenskii, Z.F.Nazyrov et al., J. Mater. Sci.: Mater. Electron., 23, 1255 (2012). http://dx.doi.org/10.1007/s10854-011-0582-8

16. P.Schleger et al., Physica C, 176, 261 (1991). http://dx.doi.org/10.1016/0921-4534(91)90722-B

17. R.V.Vovk, Z.F.Nazyrov, M.A.Obolenskii, J. Alloys and Comp., 509, 4553 (2011). http://dx.doi.org/10.1016/j.jallcom.2011.01.102

18. P.W.Anderson, Y.B.Kim, Rev. Mod., 36, 39 (1964). http://dx.doi.org/10.1103/RevModPhys.36.39

19. R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 69, 144524 (2004). http://dx.doi.org/10.1103/PhysRevB.69.144524

20. R.V.Vovk, A.A.Zavgorodniy, M.A.Obolenskii et al., J. Mater. Sci.: Mater. Electron, 22, 20 (2011). http://dx.doi.org/10.1007/s10854-010-0076-0

21. D.H.S.Smith, R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, New J. Phys., 8, 128 (2006). http://dx.doi.org/10.1088/1367-2630/8/8/128

22. M.A.Obolenskii, A.V.Bondarenko, R.V.Vovk et al., Low Temper. Phys., 23, 882 (1997). http://dx.doi.org/10.1063/1.593496

23. R.V.Vovk, A.A.Zavgorodniy, M.A.Obolenskii et al., Modern Phys. Lett. B, 24, 2295 (2010). http://dx.doi.org/10.1142/S0217984910024675

24. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Mater. Sci.:Mater. Electron., 20, 858 (2009). http://dx.doi.org/10.1007/s10854-008-9806-y

25. R.V.Vovk, G.Ya.Khadzhai, Z.F.Nazyrov et al., Physica B, 407, 4470 (2012). http://dx.doi.org/10.1016/j.physb.2012.07.049

Current number: