Funct. Mater. 2014; 21 (1): 52-58.

Internal friction in Invar Fe-35 % Ni alloy after combined SPD by hydroextrusion and drawing

V.M.Nadutov, D.L.Vashchuk, A.N.Pilipenko[1], O.A.Davidenko[2], V.A.Beloshenko[2]

[1] V.Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, 36 Bulv. Ac. Vernadskii, 03680 Kyiv, Ukraine
[2] O.O.Galkin Institute for Physics and Engineering, National Academy of Sciences of Ukraine, 72 R.Luxemburg Str., 83114 Donetsk, Ukraine


The temperature dependence of internal friction on frequency of ~3 Hz and ~60 Hz were studied in Invar Fe-35.0% Ni-0.49% Mn-0.03%C alloy after annealing at 1373 K and combined severe plastic deformation (SPD) by hydroextrusion and subsequent drawing with the total degree of accumulated deformation ε Σ = 4.69. The reduction of the relaxation IF peak intensity is observed in deformed sample of the alloy at ~380 K (the activation energy 0.82-0.93 eV) due to decreasing of mechanical and magnetomechanical relaxation losses the contribution of which is renewed after ageing of the deformed alloy. The damping growth nearby temperatures 780-820 K after combined SPD and partial its reduction after ageing of the alloy were revealed. The estimated activation energy of the relaxation process is 1.82-1.97 eV.


1. Wu Tzu-Liang, Wang Chi-Min, Acta Phys. Sinica, 14, 354 (1958).

2. I.B.Kekalo, B.G.Livshits, Fiz. Met. Metalloved., 12, 838 (1961).

3. H.B.Willems, A.M.Glushets, I.B.Kekalo et al., in: Proc. Vnutrenne Trenie v Metallicheskih Materialah, Nauka, Moscow (1970), p.182 [in Russian].

4. V.M.Nadutov, T.V.Golub, O.V.Hymenyuk, Functional Materials, 11, 496 (2004).

5. V.M.Nadutov, T.V.Golub, O.V.Hymenyuk, Metallofiz. Noveishie Technol., 29, 1621 (2007).

6. V.P.Voroshilov, A.I.Zakharov, V.M.Kalinin et al., Fiz. Met. Metalloved., 35, 953 (1973).

7. V.V.Sagaradze, A.I.Uvarov, E.I.Anoufriev, Fiz. Met. Metalloved., 77, 156 (1994).

8. I.H.Bitkulov, A.M.Burkhanov, V.A.Kazantsev et al., Fiz. Met. Metalloved., 102, 99 (2006).

9. V.I.Izotov, V.V.Rusanenko, V.I.Kopylov et al., Fiz. Met. Metalloved., 82, 123 (1996).

10. V.M.Nadutov, D.L.Vashchuk, P.Yu.Volosevich et al., Metallofiz. Noveishie Tekhnol., 34, 395 (2012).

11. V.M.Nadutov, D.L.Vashchuk, Ye.O.Svystunov et al., Functional Materials, 19, 334 (2012).

12. V.M.Nadutov, D.L.Vashchuk, P.Yu.Volosevich et al., Fiz. Tekhn. Vysokikh. Davleniy, 22, 125 (2013).

13. Physics and Applications of Invar Alloys (Honda Memorial Series on Materials Science), Maruzen Company Ltd., Tokyo (1978).

14. V.S.Postnikov, Vnutrennee Trenie v Metallah. Metallurgia, Moscow (1974) [in Russian].

15. M.M.Kasyan, A.F.Sirenko, in: Proc. Vnutrenne Trenie v Metallah i Neorganicheskih Materialah, Nauka, Moscow (1982), p.53 [in Russian].

16. S.A.Golovin, K.N.Belkin, B.M.Drapkin, in: Proc. Vnutrenne Trenie v Metallah i Splavah, Nauka, Moscow (1966), p.82 [in Russian].

17. I.A.Azizov, K.V.Popov, in: Proc. Vnutrenne Trenie v Metallah i Splavah, Nauka, Moscow (1966), p.32 [in Russian].

18. A.N.Pilipenko, N.V.Tokiy, L.F.Sennikova, in: Proc. Visokie Davlenia, 2012, Funktsionalnye i Prikladnye Aspecty, A.A.Galkin Don FTI NASU, Donetsk (2012), p.239 [in Russian].

19. V.M.Nadutov, T.V.Golub, O.V.Hymenyuk, Fiz. Met. Metalloved., 109, 1 (2010).

20. M.E.Blanter, Zh. Tekhn. Fiz., 20, 217 (1950).

21. V.M.Nadutov, Ye.A.Svystunov, S.G.Kosintsevet et al., Izv. RAN, Ser. Fizicheskaya, 69, 1475 (2005).

22. I.B.Kekalo, V.L.Stolyarov, V.N.Veselkova et al., in: Proc. Mehanizmy Relaksacionnyh Yavleniy v Tverdyh Telakh, Kaunas, Lietuva Kaunas (1974), p.129 [in Russian].

Current number: