Funct. Mater. 2014; 21 (1): 10-14.

http://dx.doi.org/10.15407/fm21.01.010

Intrinsic and impurity luminescence of CaF2, CaF2:Eu2+ and CaF2:Eu3+ nanoparticles at high energy excitation

A.V.Zhyshkovych, V.V.Vistovskyy, N.E.Mitina[1] A.S.Zaichenko[1] A.V.Gektin[2] A.S.Voloshinovskii

I.Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv, Ukraine
[1] Lviv Polytechnic National University, 12 S.Bandera St., 79013 Lviv, Ukraine
[2] Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

CaF2, CaF2:Eu2+ and CaF2:Eu3+ nanoparticles were synthesized by the chemical sedimentation method. The study of intrinsic and impurity recombination luminescence of the nanoparticles was carried out using synchrotron radiation. The intrinsic and impurity luminescence intensity was found to depend significantly on the nanoparticles size. The surface defects, the ratio between the thermalization length of photoelectrons and the nanoparticle size are crucial for luminescence intensity of the nanoparticles. The luminescence caused by the charge-transfer to Eu3+ ions is dominant for the small size nanoparticles.

References: 

1. http://www.detectors.saint-gobain.com/CaF2.aspx

2. http://www.detectors.saint-gobain.com/BaF2.aspx

3. R.Shendrik, E.A.Radzhabov, A.I.Nepomnyashchikh, Radiat. Meas., 56, 58 (2013). http://dx.doi.org/10.1016/j.radmeas.2013.01.054

4. E.A.McKigney, R.E.Del Sesto, L.G.Jacobsohn et al., Nucl. Instrum. Meth. Phys. Res. A, 579, 15 (2007). http://dx.doi.org/10.1016/j.nima.2007.04.004

5. N.Y.Morgan, G.K.Marek, P.D.Smith et al., Radiat. Res., 171, 236 (2009). http://dx.doi.org/10.1667/RR1470.1

6. Yanfei Lv, Xijun Wu, Daxiong Wu et al., Powder Technol., 173, 174 (2007). http://dx.doi.org/10.1016/j.powtec.2006.12.018

7. G.Zimmerer, Radiat. Meas., 42, 859 (2007). http://dx.doi.org/10.1016/j.radmeas.2007.02.050

8. V.V.Vistovskyy, A.V.Zhyshkovych, N.E.Mitina, A.S.Zaichenko, A.V.Gektin, A.N.Vasil'ev, A.S.Voloshinovskii, J. Appl. Phys., 112, 024325 (2012). http://dx.doi.org/10.1063/1.4739488

9. Yu.M.Aleksandrov, V.N.Makhov, T.I.Syrejshchi-kova, M.N.Yakimenko, Nucl. Instr. Meth. Phys. Res., A261, 158 (1987). http://dx.doi.org/10.1016/0168-9002(87)90588-2

10. P.A.Rodnyi, A.Kh.Khandro, A.S.Voloshinovskii, G.B.Stryganyuk, Opt. and Spectr., 103, 568 (2007). http://dx.doi.org/10.1134/S0030400X07100074

11. G.Blasse, B.C.Grabmaier, Luminescent Materials, Springer-Verlag, Berlin (1994). http://dx.doi.org/10.1007/978-3-642-79017-1

12. E.Radzhabov, A.Nepomnyaschikh, Solid State Commun., 146, 376 (2008). http://dx.doi.org/10.1016/j.ssc.2008.03.037

13. R.L.Amster, C.S.Wiggins, J. Electrochem. Soc., 116, 68 (1969). http://dx.doi.org/10.1149/1.2411777

Current number: