Funct. Mater. 2014; 21 (1): 26-30.

http://dx.doi.org/10.15407/fm21.01.26

Fast ion induced luminescence of silica implanted by molecular hydrogen

O.Kalantaryan, S.Kononenko, V.Zhurenko, N.Zheltopyatova

V. Karazin Kharkiv National University, 31 Kurchatov Ave., 61108 Kharkiv, Ukraine

Abstract: 

We studied silica implanted by 420 keV H+ and 210 keV H+ ions up to absorption doses 3.5⋅ 1021 particles per cm3 by ionoluminescence technique. We used some probe beams of molecular and atomic hydrogen ions for luminescence excitation from the implanted samples: 420 keV H+, 210 keV and 420 keV H+. It was found that significant changes in the spectrum shape of silica were observed at wavelength range of 550-650 nm during continuous ion irradiation. Using different probe beams we performed the comparative luminescence study of the silica samples implanted by H+ and H+ at the same absorption dose. For these samples we observed the difference in the spectra at wavelength range 610-650 nm, which corresponds to luminescence from non-bridge oxygen centers of silica. The possible explanation of the differences in the spectra shape was suggested.

References: 

1. Mark Goorsky, Ion implantation. InTech, Rijeka (2012).

2. Y.Susuki, Phys. Rev. A, 56, 2918 (1997). http://dx.doi.org/10.1103/PhysRevA.56.2918

3. A.Luna-Lopez, M.Aceves-Mijares, O.Malik, Sensors Actuators, A132, 278 (2006). http://dx.doi.org/10.1016/j.sna.2006.07.035

4. O.Kalantaryan, S.Kononenko, V.Zhurenko, Functional Materials, 20, 262 (2013). http://dx.doi.org/10.15407/fm20.04.462

5. D.Jimenez-Rey, O.Pena-Rodriguez, J.Manzano-Santamaria et al., Nucl. Instr. Meth. Phys. Res., B286, 282 (2012). http://dx.doi.org/10.1016/j.nimb.2011.12.025

6. S.Kononenko, O.V.Kalantaryan, V.I.Muratov et al., Rad. Meas., 42, 751 (2007). http://dx.doi.org/10.1016/j.radmeas.2007.02.061

7. O.Vasylchenko, N.Zheltopyatova, V.Zhurenko et al., Functional Materials, 17, 67 (2010).

8. J.F.Ziegler, J.P.Biersack, U.Littmark, Nucl. Instr. Meth. Phys. Res., B268, 1818 (2010). http://dx.doi.org/10.1016/j.nimb.2010.02.091

9. Yu.Borisenko, V.Gritsyna, S.Litovchenko et al., Zh. Tekh. Fiz., 69, 112 (1999).

10. S.Kononenko, O.Kalantaryan, V.Muratov, Ch.Namba, J. Plasma Fusion Res. SERIES, 7, 135 (2006).

11. S.Kononenko, O.Kalantaryan, V.Muratov et al., Nucl. Instr. Meth. Phys. Res., B246/2, 340 (2006). http://dx.doi.org/10.1016/j.nimb.2006.01.024

12. W.Brandt, A.Ratkowski, R.H.Ritchie, Phys. Rev. Lett., 33, 1325 (1974). http://dx.doi.org/10.1103/PhysRevLett.33.1325

13. J.W.Tape, W.M.Gibson, J.Remillieux et al., Nucl. Instr. Meth. Phys. Res., 132, 75 (1976). http://dx.doi.org/10.1016/0029-554X(76)90713-8

14. D.Hasselkamp, Springer Tracts Modern Phys., 123, 1 (1992). http://dx.doi.org/10.1007/BFb0038298

15. N.Z.Galunov, V.P.Seminozhenko, Teoriya i Primenenie Radiolyuminestsentsii Organicheskikh Kondensirovannykh Sred, Naukova dumka, Kiev (1997) [in Russian].

16. H.-J.Fitting, T.Ziems, Roushdey Salh et al., J. Non-Crystal. Solids, 351, 2251 (2005). http://dx.doi.org/10.1016/j.jnoncrysol.2005.06.017

Current number: