Funct. Mater. 2014; 21 (2): 226-231.

http://dx.doi.org/10.15407/fm21.02.226

Structural behaviour of continuous solid solution SmCo1-xFexO3

O.V.Kharko[1], L.O.Vasylechko[1], S.B.Ubizskii[1], A.Pashuk[1], Yu.Prots[2]

[1] Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv, Ukraine
[2] Max-Planck-Institut fur Chemische Physik fester Stoffe, 40 Nothnitzer Str., 01187 Dresden, Germany

Abstract: 

Phase and structural behaviour in the SmCoO3-SmFeO3 pseudobinary system has been investigated at the ambient conditions in a whole concentration range by means of X-ray powder diffraction technique applied laboratory and synchrotron radiation sources. Series of mixed samarium cobaltites-ferrites SmCo1-xFexO3 was obtained by the solid state reaction in air at 1573 K. Formation of a continuous solid solution SmCo1-xFexO3 with orthorhombic perovskite structure (GdFeO3 type, space group Pbnm) has been revealed. Crystal structure parameters of the mixed samarium cobaltites-ferrites, as well as nominally pure SmCoO3 and SmFeO3 have been established by full profile Rietveld refinement. Based on the analysis of structural parameters, an influence of the cation substitution on the deformation of the orthorhombic perovskite structure in the SmCo1-xFexO3 series has been established.

References: 

1. Yu.Liu, J.Ma, J.Li et al., J. Alloys Compd., 488, 204 (2009). http://dx.doi.org/10.1016/j.jallcom.2009.08.079

2. J.Mawdsley, T.Krause, Appl. Catal. A Gen., 334, 311 (2008). http://dx.doi.org/10.1016/j.apcata.2007.10.018

3. S.Uhlenbruck, F.Tietz, Mater. Sci. Eng., 107, 277 (2004). http://dx.doi.org/10.1016/j.mseb.2003.11.018

4. C.Michel, E.Delgado, G.Santillan et al., Mater. Res. Bull., 42, 84 (2007). http://dx.doi.org/10.1016/j.materresbull.2006.05.008

5. C.Tealdi, M.Islam, C.Fisher et al., Solid State Chem., 35, 491 (2007). http://dx.doi.org/10.1016/j.progsolidstchem.2007.01.015

6. J.Fergus, Sens. Actuators, 123, 1169 (2007). http://dx.doi.org/10.1016/j.snb.2006.10.051

7 K.Berggold, M.Kriener, P.Becker et al., Phys. Rev. B, 78, 9 (2008). http://dx.doi.org/10.1103/PhysRevB.78.134402

8. J.Chang, B.Lin, Y.Hsu et al., Physica B, 329, 826 (2003). http://dx.doi.org/10.1016/S0921-4526(02)02595-4

9. C.Chang, B.Lin, H.Ku, Chinese J. Phys., 41, 41, 662 (2003).

10. M.Itoh, J.Hashimoto, Physica C, 341-348, 2141 (2000).

11. M.Itoh, J.Hashimoto, S.Yamaguchi et al., Physica B, 281-282, 510 (2000). http://dx.doi.org/10.1016/S0921-4526(99)01044-3

12. J.Yan, J.Zhou, J. Goodenough, Phys. Rev. B, 69, 69, 134409 (2004).

13. K.Knizek, Z.Jirak, J.Hejtmanek et al., Eur. Phys. J., 47, 213 (2005). http://dx.doi.org/10.1140/epjb/e2005-00320-3

14. C.Zobel, M.Kriener, D.Bruns et al., Phys. Rev. B, 66, 020402 (2002). http://dx.doi.org/10.1103/PhysRevB.66.020402

15. Y.Jia, S.Liu, Y.Wu et al., Phys. Status Solidi A, 143, 15 (1994). http://dx.doi.org/10.1002/pssa.2211430103

16. D.Karpinsky, I.Troyanchuk, K.Barner et al., J. Phys.:Condens. Matter., 17, 7219 (2005). http://dx.doi.org/10.1088/0953-8984/17/46/006

17. S.Ivanova, A.Senyshyn, E.Zhecheva et al., Solid State Chem., 183, 940 (2010). http://dx.doi.org/10.1016/j.jssc.2010.02.009

18. H.Nagamoto, I.Mochida, K.Kagotani et al., J. Mater. Res., 8, 3158 (1993). http://dx.doi.org/10.1557/JMR.1993.3158

19. Z.Wang, Ch.Chen, C.Feng et al., Acta Phys.-Chim. Sin., 24, 375 (2008). http://dx.doi.org/10.1016/S1872-1508(08)60017-0

20. N.Escalona, S.Fuentealba, G.Pecchi, Appl. Catal. A_Gen., 381, 253 (2010). http://dx.doi.org/10.1016/j.apcata.2010.04.022

21. O.Kharko, L.Vasylechko, Visnyk of Lviv Polytechnic National University. Electronics, 734, 119 (2012).

22. O.Kharko, L.Vasylechko, Yu.Prots. in: Proc. of 14th European Conference on Solid State Chemistry, Bordeaux, France (2013), p.75.

23. O.Kharko, L Vasylechko, Visnyk of Lviv Polytechnic National University. Electronics, 764, 61 (2013).

24. F.Bartolome, M.Kuz'min, J.Bartolome et al., J. Magn. Magn. Mater., 140-144, 2159 (1995). http://dx.doi.org/10.1016/0304-8853(94)01005-6

25. R.Zhang, J.Hu, Z.Han et al., J. Rare Earths, 28, 591 (2010). http://dx.doi.org/10.1016/S1002-0721(09)60160-5

26. Y.Ren, E.Liu, J.Wang et al., Rare Metals, 21, 190 (2002).

27. Y.Itagaki, M.Mori, Y.Hosoya et al., Sens. Actuators B, 122, 315 (2007). http://dx.doi.org/10.1016/j.snb.2006.06.001

28. M.Zhao, H.Peng, J.Hu et al., Sens. Actuator B, 129, 953 (2008). http://dx.doi.org/10.1016/j.snb.2007.10.012

29. O.Kharko, L.Vasylechko, Yu.Prots, in: Proc. of XII International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine (2013), p.144.

30. M.Knapp, V.Joco, C.Bahtz et al., Nucl. Instrum. Methods A, 521, 565 (2004). http://dx.doi.org/10.1016/j.nima.2003.10.100

31. M.C.Bahtz, H.Ehrenberg, H.Fuess, J. Synchrotron Radiat., 11, 328 (2004). http://dx.doi.org/10.1107/S0909049504009367

32. L.Akselrud, P.Zavalij, Yu.Grin et al., Mater. Sci. Forum, 133-136, 335 (1993). http://dx.doi.org/10.4028/www.scientific.net/MSF.133-136.335

33. L.Vasylechko, A.Matkovskii, D.Savytskii et al., J. Alloys Compd., 292, 57 (1999). http://dx.doi.org/10.1016/S0925-8388(99)00247-9

34. L.Vasylechko, A.Matkovskii, A.Suchocki et al., J. Alloys Compd., 286, 213 (1999). http://dx.doi.org/10.1016/S0925-8388(98)01009-3

35. S.Sasaki, C.Prewitt, R.Liebermann, Am. Mineral., 68, 1189 (1983).

36. L.Vasylechko, A.Senyshyn, U.Bismayer, ed. by K.A.Gschneidner, Jr., J.-C.G.Bunzli, V.K.Pecharsky, Handbook on the Physics and Chemistry of Rare Earths, North-Holland, Netherlands (2009), v.39, p.113.

Current number: