Funct. Mater. 2014; 21 (2): 137-141.

http://dx.doi.org/10.15407/fm21.02.137

Scattering of electrons in oxygen underdoped YBa2Cu3O7-x single crystals

G.Ya.Khadzhai, R.V.Vovk, N.R.Vovk

V.Karazin National University, 4 Svoboda Sq., 61022 Kharkiv, Ukraine

Abstract: 

The electrical resistivity in the range of Tc-300 K in the layer planes of YBa2Cu3O7-x single crystals with a range of oxygen deficiency, which is characterized by the Tc in the range 78 + 92 K was studied. The experimental data on the resistance in normal state are approximated by an expression that takes into account the scattering of electrons on phonons, as well as on defects and the fluctuation conductivity in 3D-model of the Aslamazov-Larkin theory. According to this approximation, depending upon the oxygen deficiency, the Debye temperature changes from 245 to 400 K, coherence length ξ c ≈ 0.5 Å .

References: 

1. T.A.Friedman, J.P.Rice, J.Giapintzakis, D.M.Ginzberg, Phys. Rev. B, 39, 4258 (1989). http://dx.doi.org/10.1103/PhysRevB.39.4258

2. N.E.Alexeevskii, A.V.Mitin, E.P.Khlybov et al., Supercond.:Phys. Chem. Eng., 2, 40 (1989).

3. H.A.Borges, M.A.Continentino, Solid State Commun., 80, 197 (1991). http://dx.doi.org/10.1016/0038-1098(91)90180-4

4. M.A.Obolenskii, R.V.Vovk, A.V.Bondarenko, N.N.Chebotaev, Low Temp. Phys., 32, 571 (2006). http://dx.doi.org/10.1063/1.2215373

5. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy, A.V.Bondarenko, J. Alloys Comp., 453, 69 (2008). http://dx.doi.org/10.1016/j.jallcom.2006.11.169

6. P.Schleger, W.N.Hardy, B.X.Yang, Physica C, 176, 261 (1991). http://dx.doi.org/10.1016/0921-4534(91)90722-B

7. R.V.Vovk, N.R.Vovk, A.V.Samoilov et al., Solid State Commun., 170, 6 (2013). http://dx.doi.org/10.1016/j.ssc.2013.07.011

8. A.V.Bondarenko, V.A.Shklovskij, R.V.Vovk et al., Low Temp. Phys., 23, 962 (1997). http://dx.doi.org/10.1063/1.593511

9. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., Physica C, 469, 203 (2009). http://dx.doi.org/10.1016/j.physc.2009.01.011

10. S.Sadewasser, J.S.Schilling, A.P.Paulicas, B.M.Veal, Phys. Rev. B, 61, 741 (2000). http://dx.doi.org/10.1103/PhysRevB.61.741

11. R.V.Vovk, A.A.Zavgorodniy, M.A.Obolenskii et al., J. Mater. Sci.: Mater. in Electron., 22, 20 (2011). http://dx.doi.org/10.1007/s10854-010-0076-0

12. A.V.Bondarenko, V.A.Shklovskij, M.A.Obolenskii et al., Phys. Rev. B - Condens. Matter and Mater. Phys., 58, 2445 (1998). http://dx.doi.org/10.1103/PhysRevB.58.2445

13. R.V.Vovk, M.A.Obolenskii, Z.F.Nazyrov et al., J. Mater. Sci.: Mater. in Electron., 23, 1255 (2012). http://dx.doi.org/10.1007/s10854-011-0582-8

14. A.V.Bondarenko, A.A.Prodan, M.A.Obolenskii et al., Low Temper. Phys., 27, 339 (2001). http://dx.doi.org/10.1063/1.1374717

15. R.V.Vovk, N.R.Vovk, O.V.Shekhovtsov et al., Supercond. Sci. Technol., 26, 085017 (2013). http://dx.doi.org/10.1088/0953-2048/26/8/085017

16. J.D.Jorgencen, P.Shiyou, P.Lightfoot et al., Physica C, 167, 571 (1990). http://dx.doi.org/10.1016/0921-4534(90)90676-6

17. R.V.Vovk, Z.F.Nazyrov, M.A.Obolenskii et al., Philosoph. Mag., 91, 2291 (2011). http://dx.doi.org/10.1080/14786435.2011.552893

18. R.V.Vovk, G.Ya.Khadzhai, Z.F.Nazyrov et al., Physica B, 407, 4470 (2012). http://dx.doi.org/10.1016/j.physb.2012.07.049

19. R.V.Vovk, A.A.Zavgorodniy, M.A.Obolenskii et al., Modern Phys. Lett. B, 24, 2295 (2010). http://dx.doi.org/10.1142/S0217984910024675

20. P.Rodriges, A.R.Jurelo, P.de Azambuja, Modern Phys. Lett. B, 22, 1717 (2008). http://dx.doi.org/10.1142/S0217984908016418

21. E.G.Maximov, Uspekhi Fiz. Nauk, 170, 1033 (2000). http://dx.doi.org/10.3367/UFNr.0170.200010a.1033

22. L.J.Colquitt, Appl. Phys., 36, 2454 (1965). http://dx.doi.org/10.1063/1.1714510

23. L.G.Aslamazov, A.I.Larkin, Phys. Lett., 26A, 238 (1968). http://dx.doi.org/10.1016/0375-9601(68)90623-3

24. T.Aisaka, M.J.Shimizu, Phys. Soc. Jpn., 28, 646 (1970). http://dx.doi.org/10.1143/JPSJ.28.646

25. U.Schwingenschlogl, C.Scuster, Appl. Phys. Lett., 100, 253111 (2012). http://dx.doi.org/10.1063/1.4729892

26. B.Leridon, A.Defossez, J.Dumont et al., Phys. Rev. Lett., 87, 197007-1 (2001). http://dx.doi.org/10.1103/PhysRevLett.87.197007

27. T.Krekels, H.Zou, G.Van Tendeloo et al., Physica C, 196, 363 (1992). http://dx.doi.org/10.1016/0921-4534(92)90458-O

28. Liang Ruixing, D.A.Bonn, W.N.Hardy, Physica C, 304, 105 (1998). http://dx.doi.org/10.1016/S0921-4534(98)00275-5

29. Liang Ruixing, D.A.Bonn, W.N.Hardy, Phys. Rev. B, 73, 180505 (2006). http://dx.doi.org/10.1103/PhysRevB.73.180505

30. Alekseevskii N.E., Gusev A.V., Devyatykh G.G. et al., JETP Lett., 47, 168 (1988).

31. B.Oh, K.Char, A.D.Kent, Naito M. et al., Phys. Rev. B, 37, 7861 (1988). http://dx.doi.org/10.1103/PhysRevB.37.7861

32. R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 69, 144524 (2004). http://dx.doi.org/10.1103/PhysRevB.69.144524

33. A.J.Matthews, K.V.Kavokin, A.Usher et al., Phys. Rev. B, 70, 075317 (2004). http://dx.doi.org/10.1103/PhysRevB.70.075317

34. A.J.Matthews, P.G.Curran, V.V.Khotkevych et al., Phys. Rev. B, 84, 104507 (2011). http://dx.doi.org/10.1103/PhysRevB.84.104507

35. D.H.C.Smith, R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, New J. Phys., 8, 128 (2006). http://dx.doi.org/10.1088/1367-2630/8/8/128

36. I.N.Adamenko, K.E.Nemchenko, V.I.Tsyganok, A.I.Chervanev, Low Temp. Phys., 20, 498 (1994).

Current number: