Funct. Mater. 2014; 21 (2): 158-163.

http://dx.doi.org/10.15407/fm21.02.158

Features of energy transport in EuMgB5O10 and EuP3O9 quasi-one-dimensional lattices

N.V.Kononets, V.V.Seminko, P.O.Maksimchuk, I.I.Bespalova, A.A.Masalov, Yu.V. Malyukin

Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

Processes of excitation energy migration in EuMgB5O10 and EuP3O9 quasi-one-dimensional matrices have been investigated by means of steady-state and time-resolved luminescence spectroscopy. It was shown that the patterns of energy migration in these materials are sufficiently different - while for EuMgB5O10 the most effective energy transport takes place at room temperature via 5D07F1 transitions of Eu3+ ion, for EuP3O9 energy transfer is more effective at low temperatures and mediated by Eu3+-O2- charge transfer states. The difference in energy transport processes can be explained taking into account the peculiarities of phonon subsystem for borate and phosphate matrices.

References: 

1. B.Movaghar, C.W.Sauer, D.Wurtz, J. Stat. Phys., 27, 473 (1982). http://dx.doi.org/10.1007/BF01011087

2. F.Kellendonk, G.Blasse, J. Chem. Phys., 75, 561 (1981). http://dx.doi.org/10.1063/1.442061

3. P.A.M.Berdowski, G.Blasse, J. Luminescence, 29, 243 (1984). http://dx.doi.org/10.1016/S0022-2313(84)90092-9

4. P.A.M.Berdowski, R.Van Mens, G.Blasse, J. Luminescence, 33, 147 (1985). http://dx.doi.org/10.1016/0022-2313(85)90013-4

5. P.A.M.Berdowski, J.Van Herk, G.Blasse, J. Luminescence, 34, 9 (1985). http://dx.doi.org/10.1016/0022-2313(85)90089-4

6. O.Viagin, A.Masalov, I.Ganina, Yu.Malyukin, Opt. Mat., 31, 1808 (2009). http://dx.doi.org/10.1016/j.optmat.2008.12.038

7. M.Buijs, G.Blasse, J. Luminescence , 5, 263 (1986). http://dx.doi.org/10.1016/0022-2313(86)90065-7

8. D.O'Connor, Time-correlated Single Photon Counting, Academic Press, New York (1984).

9. B.Saubat, M.Vlasse, C. Fouassier, J. Sol. St. Chem., 34, 271 (1980). http://dx.doi.org/10.1016/0022-4596(80)90425-9

10. Th.Forster, Ann. Phys., 437, 55 (1948). http://dx.doi.org/10.1002/andp.19484370105

11. J.R Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York (2006). http://dx.doi.org/10.1007/978-0-387-46312-4

12. H.Y-P.Hong, Acta Cryst. B, 30, 468 (1974). http://dx.doi.org/10.1107/S0567740874003001

13. D.Wang, Y.Wang, L.Wang, J. Electrochem. Soc., 154, J32 (2007). http://dx.doi.org/10.1149/1.2387017

14. G.Blasse, B.C.Grabmaier, Luminescent Materials, Springer-Verlag, Berlin (1994). http://dx.doi.org/10.1007/978-3-642-79017-1

15. C.Fouassier, B.Saubat, P.Hagenmuller, J. Luminescence, 23, 405 (1983). http://dx.doi.org/10.1016/0022-2313(81)90143-5

16. C.T.Dinh, P.V.Huong, R.Olazcuaga, C. Fouassier, J. Opt. Adv. Mat., 2, 159 (2000).

Current number: