Funct. Mater. 2014; 21 (3): 345-351.

http://dx.doi.org/10.15407/fm21.03.345

The highly efficient gamma-neutron detector for control of fissionable radioactive materials

V.D.Ryzhikov[1], B.V.Grinyov[1], G.M.Onyshchenko[1,2], L.A.Piven'[1], S.V.Naydenov[1,2], O.K.Lysetska[1]

[1] Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine
[2] V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
[3] Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

Comparative measurements and analysis of detection efficiency of fast and thermal neutrons from 239Pu-Be source by heavy oxide scintillators (Z≥50) confirmed high detection efficiency (∼ 40-50 %). The most probable mechanism determining the fast neutron detection efficiency is the reaction of inelastic scattering (n, n ′ γ ) as the main mechanism of interaction of neutrons with nuclei of oxide scintillators. The fast neutron detection efficiency was determined by the method of internal counting of gamma-quanta emerging in the scintillator under (n, n ′ γ ) reaction. It has been shown that the use of heavy oxide scintillators (which are also efficient gamma-detectors) in inspection systems can allow detection of fissionable radioactive materials.

References: 

1. Ukraine Patent No.80455 (2007).

2. V.D.Ryzhikov, B.V.Grynyov, G.M.Onyshenko et al., in: Tendentsiya Razvitiya Scintillatsionnoy Tehniki, ISMA, Kharkov (2013), p.171 [in Russian].

3. V.D.Ryzhikov, B.V.Grinyov, G.M.Onyshchenko et al., IEEE Trans. Nucl. Sci., 57, 2747 (2010). http://dx.doi.org/10.1109/TNS.2009.2037747

4. M.Anelli, G.Battistoni, S.Bertolucci et al., Nucl. Instr. Meth. Phys. Res. A, 580, 368 (2007). http://dx.doi.org/10.1016/j.nima.2007.08.005

5. V.D.Ryzhikov, B.V.Grinyov, G.M.Onishchenko et al., in: Proc. First Intern. Conf. on Advanc. in Nucl. Instrum., Measur. Meth. and their Appl. (ANIMMA 2009), Marseile, France (2009), p.188.

6. U.S. Patent 8,058,624 (2011).

7. Ukraine Patent No.96428. (2010).

8. Ukraine Patent No.92193. (2010).

9. V.Ryzhikov, B.Grynyov, G.Onishcenko et al., Telecommun. and Radio Engin., 71, 1665 (2012). http://dx.doi.org/10.1615/TelecomRadEng.v71.i18.50

10. V.Ryzhikov, B.Grynyov, G.Onishcenko et al., Zbirnyk Naukovyh Prats' SNUYAEtaP, 44, 170 (2012).

11. N.Avaev, G.A.Vasilyev, A.P.Veselkin et al., Experimental Studies of Gamma-radiation and Neutron Fields, Atomizdat, Moscow (1974) [in Russian].

12. N.A.Vlasov, Neutrons, Nauka, Moscow (1971) [in Russian].

13. J.M.Blatt, V.F.Weusskopf, Theoretical Nuclear Physics, Inostr. Literatura, Moscow (1954) [in Russian].

14. A.Akhiezer, I.Pomeranchuk, Nekotorye Voprosy Teorii Yadra, Techn. Literatura, Moscow (1950) [in Russian].

15. Yu.K.Akimov, Stsintillyatsionnye Metody Registratsii Chastic Bolshikh Energiy, MGU, Moscow (1963) [in Russian].

16. V.Rudnichenko, S.Zvezhynsky. Sovremennye Technologii Bezopasnosty, 3, 200 (2007).

Current number: