Funct. Mater. 2014; 21 (3): 260-265.

http://dx.doi.org/10.15407/fm21.03.260

Spectroscopical study of natural nanostructured carbonaceous material shungite

A.A.Konchits[1], B.D.Shanina[1], M.Ya.Valakh[1], I.B.Yanchuk[1], V.O.Yukhymchuk[1], A.V.Yefanov[1], S.V.Krasnovyd[1], M.A.Skoryk[2]

[1] Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine
[2] Nanomedtech LLC, 68 Gorkogo Str., 03680 Kyiv, Ukraine

Abstract: 

The correlation between morphology, local structure and magnetic properties of the different origin shungite material with nanocarbon content 25-40 wt. % was studied by SEM, EPR, and Raman scattering methods. It was established that structure of the shungite samples is formed by micron size agglomerations of carbon and silicon dioxide clusters with impregnations of pyrite (FeS2), iron oxide and aluminium oxide particles. It was found from the Raman data that nanocarbon fraction is formed from sp2-hybridized well ordered carbon clusters, size of which increases from 9 nm up to 12 nm after annealing of the samples. It was found for the first time that origin of L3 and L4 EPR lines is due to oxy-deficiency centers in the silicon dioxide clusters.

References: 

1. V.A.Melezhik, M.M.Filippov, A.E.Romashkin, Ore Geology Rev., 24, 135 (2004). http://dx.doi.org/10.1016/j.oregeorev.2003.08.003

2. S.V.Kholodkevich, V.I.Berezkin, V.Yu.Davydov, Phys. Solid State, 41, 1291 (1999). http://dx.doi.org/10.1134/1.1130984

3. M.V.Avdeev, T.V.Tropin, V.L.Aksenov et al., Carbon, 44, 954 (2006). http://dx.doi.org/10.1016/j.carbon.2005.10.010

4. N.I.Alekseev, O.V.Arapov, B.O.Bodyagin et al., Zh. Prikladnoi Khimii, 79, 1423 (2006).

5. A.Z.Zaidenberg, E.F.Dyukkiev, V.V.Kovalevski, Y.K.Kalinin, Electrochemistry, 27, 549 (1991).

6. D.Heymann, Carbon, 33, 237 (1995). http://dx.doi.org/10.1016/0008-6223(95)92804-N

7. P.R.Buseck, Earthand Planetary Scie. Lett., 203, 781 (2002). http://dx.doi.org/10.1016/S0012-821X(02)00819-1

8. G.Zhao, P.R.Buseck, A.Rougere, M.M.J.Treacy. Ultramicroscopy, 109, 177 (2009). http://dx.doi.org/10.1016/j.ultramic.2008.10.006

9. A.C.Ferrari, Solid State Commun., 143, 47 (2007). http://dx.doi.org/10.1016/j.ssc.2007.03.052

10. F.Tuinstra, J.L.Koening, J. Chem. Phys., 53, 1126 (1970). http://dx.doi.org/10.1063/1.1674108

11. A.C.Ferrari, J.Robertson, Phys. Rev. B, 61, 14095 (2000). http://dx.doi.org/10.1103/PhysRevB.61.14095

12. L.G.Cancado, K.Takai, T.Enoki et al., Appl. Phys. Lett., 88, 163106 (2006). http://dx.doi.org/10.1063/1.2196057

13. M.A.Augustyniak-Jablokow, Yu.V.Yablokov, B.Andrzejewski et al., Phys. Chem. Minerals, 37, 237 (2010). http://dx.doi.org/10.1007/s00269-009-0328-9

14. M.Yu.Yablokov, M.A.Augustyniak-Jablokow, W.Kempiniski et al., Phys. Stat. Solidi (b), 243, R66 (2006). http://dx.doi.org/10.1002/pssb.200642226

15. C.P.Poole, Jr., Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques, 2nd ed., Dover (1997).

16. N.P.Baran, V.M.Maksimenko, V.G.Gavriljuk et al., Phys. Rev. B, 48, 3224 (1993). http://dx.doi.org/10.1103/PhysRevB.48.3224

17. A.A.Konchits, B.D.Shanina, M.Ya.Valakh et al., J. Appl. Phys., 112, 043504 (2012). http://dx.doi.org/10.1063/1.4745015

18. D.L.Griscom, Nucl. Instrum. Meth. Phys. Res., B1, 481 (1984). http://dx.doi.org/10.1016/0168-583X(84)90113-7

19. D.L.Griscom, Defects in SiO2 and related dielectrics: Science and Technology, edited by G. Pacchioni, L. Skuja, and D. L. Griscom Kluwer Academic, Dordrecht, 2000.

Current number: