Funct. Mater. 2015; 22 (2): 155-161.

http://dx.doi.org/10.15407/fm22.02.155

Peculiarities of Ag metallic nanoparticles formation in alkaline and alkaline-earth tetraborate glasses

R.M.Dutka[1], V.T.Adamiv[1], Ya.V.Burak[1], R.V.Gamernyk[2], I.M.Teslyuk[1]

[1] O.Vlokh Institute of Physical Optics, 23 Dragomanov Str.,79005 Lviv, Ukraine
[2]I.Franko National University, 8 Kyrylo and Methodiy Str., 79005 Lviv, Ukraine

Abstract: 

Investigations of alkaline Li2B4O7:Ag and alkaline-earth CaB4O7:Ag tetraborate glasses with Ag nanoparticles (Ag NPs) formed by thermal treatment in vacuum have been performed. It is ascertained that in volumes of the both glasses a small number of Ag NPs is formed, whereas their main mass is concentrated near the samples surface. It is obtained from the plasmon resonance results that, under the same annealing conditions, concentration of the Ag NPs in the near-surface layer of CaB4O7:Ag glass is appreciably smaller than in the near-surface layer of Li2B4O7:Ag glass. This peculiarity is explained by difference between contributions of alkaline Li+ and alkaline-earth Ca2+ ions to processes of the Ag NPs formation in respective tetraborate glass.

Keywords: 
borate glasses, nonlinear refractive index, Ag nanoparticles, plasmon resonance.
References: 

1. V.M.Shalaev, Phys. Rep., 272, 61 (1996). http://dx.doi.org/10.1016/0370-1573(95)00076-3

2. V.A.Markel, V.M.Shalaev, Phys. Rev. B, 53, 2425 (1996). http://dx.doi.org/10.1103/PhysRevB.53.2425

3. V.A.Markel, V.M.Shalaev, Phys. Rev. B, 53, 2437 (1996). http://dx.doi.org/10.1103/PhysRevB.53.2425

4. L.A.Blanco, F.J.Garcia de Abajo, J. Quant. Spectr. Rad. Transf., 89, 37 (2004). http://dx.doi.org/10.1016/j.jqsrt.2004.05.009

5. M.I.Stockman, V.M.Shalaev, M.Moskovits et al., Phys. Rev. B, 46, 2821 (1992). http://dx.doi.org/10.1103/PhysRevB.46.2821

6. S.V.Karpov, V.S.Gerasimov, I.L.Isaev, V.A.Markel, Phys. Rev. B, 72, 2545 (2005). http://dx.doi.org/10.1103/PhysRevB.72.205425

7. H.Inouye, K.Tanaka, I.Tanahashi et al., Jpn. J. Appl. Phys., 39, 5123 (2000). http://dx.doi.org/10.1143/JJAP.39.5132

8. Y.-P.Sun, J.E.Riggs, H.W.Rollins, R.Guduru, J. Phys. Chem. B, 103, 77 (1999). http://dx.doi.org/10.1021/jp9835014

9. J.Staromlynska, J.McKay, P.Wilson, J. Appl. Phys., 88, 1726 (2000). http://dx.doi.org/10.1063/1.1303054

10. K.Wundke, S.Potting, J.Auxier et al., Appl. Phys. Lett., 76, 10 (2000). http://dx.doi.org/10.1063/1.125639

11. M.A.Garcia, J. Phys. D: Appl. Phys., 44, 283001 (2011). http://dx.doi.org/10.1088/0022-3727/44/28/283001

12. Silver Nanoparticles, ed. D.P.Perez, In-Tech, Vukovar, Croatia (2010).

13. A.V.Red'kov, Phys. Sol. State, 54, 1875 (2012). http://dx.doi.org/10.1134/S1063783412090260

14. P.A.Obraztsov, A.V.Nashchekin, N.V.Nikonorov et al., Phys. Sol. State, 55, 1272 (2013). http://dx.doi.org/10.1134/S1063783413060267

15. W.Soppe, F.Aldenkamp, H.W.Hartog, J. Non-Cryst. Sol., 91, 351 (1987). http://dx.doi.org/10.1016/S0022-3093(87)80345-9

16. R.E.Youngman, J.W.Zwanziger, J. Non-Cryst. Sol., 168, 293 (1994). http://dx.doi.org/10.1016/0022-3093(94)90342-5

17. R.E.Youngman, S.T.Haubrich, J.W.Zwanziger et al., Science, 269, 1416 (1995). http://dx.doi.org/10.1126/science.269.5229.1416

18. K.Terashima, S.-H.Kim, T.Yoko, J. Ceram. Soc., 76, 1601 (1995). http://dx.doi.org/10.1111/j.1151-2916.1995.tb08857.x

19. Ch.Chen, Y.Wu, R.Li, Intern. Rev. in Physо Chemо, 8, 65 (1989). http://dx.doi.org/10.1080/01442358909353223

20. M.Abdel-Baki, F.A.Abdel-Wahab, F.El-Diasty, J. Appl. Phys., 111, 073506 (2012). http://dx.doi.org/10.1063/1.3698623

21. I.M.Bolesta, O.O.Kushnir, I.I.Kolych et al., Adv. Sci. Eng. Med., 6, 326 (2014). http://dx.doi.org/10.1166/asem.2014.1498

22. V.T.Adamiv, I.M.Bolesta, Ya.V.Burak et al., Physica B: Phys. Cond. Matter., 449C, 31 (2014). http://dx.doi.org/10.1016/j.physb.2014.05.009

23. V.T.Adamiv, Ya.V.Burak, R.V.Gamernyk et al., Functional Materials, 18, 298 (2011).

24. S.S.Rojas, J.E.De Souza, K.Yukimitu, A.C.Hernandec, J. Non-Cryst. Sol., 398-399, 57 (2014).

25. V.T.Adamiv, Ya.V.Burak, I.S.Girnyk, I.M.Teslyuk, Functional Materials, 20, 52 (2013). http://dx.doi.org/10.15407/fm20.01.052

26. M.Sheik-Bahae, A.A.Said, E.W.Van Stryland, Opt. Lett., 14, 955 (1989). http://dx.doi.org/10.1364/OL.14.000955

27. M.Sheik-Bahae, A.A.Said, T.H.Wei et al., IEEE J. Quant. Electron., QE-26, 760 (1990). http://dx.doi.org/10.1109/3.53394

28. M.Narajan, R.Faggini, I.O.Brown, Cryst. Struct. Commun., 8, 367 (1979).

29. A.Senyshyn, H.Boysen, R.Niewa et al., J. Phys. D:Appl. Phys., 45, 175305 (2012). http://dx.doi.org/10.1088/0022-3727/45/17/175305

30. N.V.Zayakina, A.A.Brovkin, Sov. Phys.-Crystallogr., 22, 275 (1977).

31. B.V.Padlyak, S.I.Mudry, Y.O.Kulyk et al., Mater. Sci., Poland., 30, 264 (2012). http://dx.doi.org/10.2478/s13536-012-0032-1

32. J.M.Fernandez Navarro, J.Toudert, Y.Rodriguez-Lazcano et al., Appl. Phys. B, 113, 205 (2013). http://dx.doi.org/10.1007/s00340-013-5458-6

33. G.V.Arnold, J. Appl. Phys., 46, 4466 (1975). http://dx.doi.org/10.1063/1.321422

34. S.S.Rojas, K.Yukimitu, A.S.S. de Camargo et al., J. Non-Cryst. Sol., 352, 3608 (2006). http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.128

Current number: