Funct. Mater. 2015; 22 (2): 258-262.

http://dx.doi.org/10.15407/fm22.02.258

Preparation of nanowires based on the tobacco mosaic virus and gold nanoparticles

V.L.Karbivskyy, N.A.Kurgan, V.Kh.Kasyanenko, Yu.A.Lukyanenko, L.I.Karbovskaya

G.Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, 36 Vernadsky blvd., 03680 Kyiv, Ukraine

Abstract: 

The technique of producing nanowires based on TMV and gold nanoparticle, which consists of multiple cycles of sequentially adding the metal source, viruses and reduced agent, was developed. A study carried out of the physicochemical properties and the morphology of the nanowires obtained by atomic force microscopy and X-ray photoelectron spectroscopy "angular resolution". It was found that the resulting hybrid virus-inorganic structure prefer to cluster ordering. Interaction nanowires with the substrate characterized C-N bond. Bond N-C=O characterized binding virions with each other.

Keywords: 
nanowires, tobacco mosaic virus, gold nanoparticles, atomic force microscopy.
References: 

1. M.Sarikaya, C.Tamerler, A.Jen, Nature Mater., 2, 577 (2003). http://dx.doi.org/10.1038/nmat964

2. K.Kordas, A.E.Pap, J.Vahakangas et al., Appl. Surf. Sci., 252, 1471 (2005). http://dx.doi.org/10.1016/j.apsusc.2005.02.120

3. J.H.Wang, P.Y.Su, M.Y.Lu et al., Electrochem. Solid-State Lett., 8, 9 (2005). http://dx.doi.org/10.1149/1.1836112

4. S.Sun, D.Yang, G.Zhang et al., Chem. Mater., 19, 6376 (2007). http://dx.doi.org/10.1021/cm7022949

5. B.Xiang, P.Wang, X.Zhang et al., Nano Lett., 7, 323 (2007). http://dx.doi.org/10.1021/nl062410c

6. L.Durrer, T.Helbling, C.Zenger et al., Sens. Actuators B, 132, 485 (2008). http://dx.doi.org/10.1016/j.snb.2007.11.007

7. D.Q.Zhang, J.Yang, Y.Li, Small., 9, 1284 (2013). http://dx.doi.org/10.1002/smll.201202986

8. X.Feng, K.Shankar, O.K.Varghese et al., Nano Lett., 8, 3781 (2008). http://dx.doi.org/10.1021/nl802096a

9. T.Ghoshal, S.Biswas, S.Kar et al., Nanotechnology, 19, 065606 (2008). http://dx.doi.org/10.1088/0957-4484/19/6/065606

10. V.L.Karbivskiy, T.A.Korniyuk, Ukr. Bioorgan. Acta, 2, 7 (2009).

11. Niu Zhongwei et al., Nano Lett., 12, 3729 (2007). http://dx.doi.org/10.1021/nl072134h

12. Jung-Sun Lim et al., J. Nanomater., 4, 620505 (2010).

13. E.Dujardin et al., Nano Lett., 3, 413 (2003). http://dx.doi.org/10.1021/nl034004o

14. M.A.Correa-Duarte et al., Angew. Chem. Int. Ed., 44, 4375 (2005). http://dx.doi.org/10.1002/anie.200500581

15. H.Wang et al., J. Am. Chem. Soc., 129, 12924 (2007). http://dx.doi.org/10.1021/ja075587x

16. Keith M. Bromley et al., J. Mater. Chem., 18, 4796 (2008). http://dx.doi.org/10.1039/b809585j

17. V.L.Karbivskyy, V.Kh. Kasyanenko, N.A. Kurgan et al., Dopovidy NAN Ukraine, 3, 74 (2011).

18. V.L.Karbivskyy, N.A.Kurgan, V.Kh.Kasyanenko et al., Nanosistemy, Nanomaterialy, Nanotekhnologyy, 4, 665 (2014).

19. J.Fang, Ency Nanosci. & Nanotechn., 5, 3953 (2004).

20. L.Y.Zhang et al., Nano-Micro Lett., 1, 49 (2009). http://dx.doi.org/10.1007/BF03353607

21. Tzu-Chun Tseng et al., Nature Chem., 2, 374 (2010). http://dx.doi.org/10.1038/nchem.591

22. J.Turkevich, P.S.Stevenson, J.Hiller, Discuss. Faraday Soc., 11, 55 (1951). http://dx.doi.org/10.1039/df9511100055

23. S.Majumder et al., J. Appl. Surf. Sci., 256, 438 (2009). http://dx.doi.org/10.1016/j.apsusc.2009.06.097

24. J.Ni et al., J. Thin Solid Films, 516, 7422 (2008). http://dx.doi.org/10.1016/j.tsf.2008.02.035

25. K.Funato et al., J. Thin Solid Films, 518, 699 (2009). http://dx.doi.org/10.1016/j.tsf.2009.07.072

Current number: