Funct. Mater. 2015; 22 (3): 299-303.

http://dx.doi.org/10.15407/fm22.03.299

Peculiarities of the solid-state synthesis of yttrium and gadolinium orthovanadates raw material

O.V.Voloshyna[1], V.N.Baumer[2], A.N.Puzan[2], O.Ts.Sidletskiy[1], Ia.V.Gerasymov[1]

[1] Institute for Scintillation Materials, STC ”Institute for Single Crystals” National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine
[2] Institute for Single Crystals, STC ”Institute for Single Crystals”, National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

Present research deals with exploration of the kinetics of chemical interaction between yttrium or gadolinium oxide and vanadium (V) oxide. It was shown that in the temperature range up to 600°C the limiting stage of the orthovanadate synthesis is chemical interaction, and in the temperature range from 600°C to 800°C the limiting stage is diffusion of the starting oxide through the layer of the chemical interaction product. Optimal mode of the solid-state synthesis of the yttrium or gadolinium orthovanadates from the starting oxides was determined.

Keywords: 
rare earth orthovanadate, solid-state synthesis, transformation degree, Cz-growth.
References: 

1. U.S. Patent 3,999,145 (1976).

2. S.Bar, H.Scheife, G.Huber, Opt. Mat., 28, 681 (2006). http://dx.doi.org/10.1016/j.optmat.2005.09.043

3. W.Gong, Y.Qi, Y.Bi, Opt. Commun., 282, 955 (2009). http://dx.doi.org/10.1016/j.optcom.2008.11.015

4. X.-li Yan, X.Wu, J.-fei Zhou et al., J. Cryst. Growth, 212, 204 (2000). http://dx.doi.org/10.1016/S0022-0248(99)00894-5

5. A.K.Levine, F.C.Palilla, Appl. Phys. Lett., 5, 118 (1964). http://dx.doi.org/10.1063/1.1723611

6. U.S. Patent 8,158,247 (2012).

7. Y.Fujimoto, T.Yanagida, Y.Yokota et al., Nucl. Instr. and Meth. Phys. Res. A, 635, 53 (2011). http://dx.doi.org/10.1016/j.nima.2011.01.044

8. O.V.Voloshina, V.N.Baumer, V.G.Bondar et al., Nucl. Instr. and Meth. Phys. Res. A, 664, 299 (2012). http://dx.doi.org/10.1016/j.nima.2011.10.055

9. K.Byrappa, B.Nirmala, K.M.Lokanatha Rai et al., in: Crystal Growth Technology, Springer-Verlag Berlin Heidelberg, Berlin (2003), p.335. http://dx.doi.org/10.1016/B978-081551453-4.50012-9

10. L.Sangaletti, B.Allieri, L.E.Depero et al., J. Cryst. Growth, 198/199, 454 (1999). http://dx.doi.org/10.1016/S0022-0248(98)01031-8

11. J.Isasi, M.L.Veiga, Y.Laureiro et al., J. All. Compnd., 177, 143 (1991). http://dx.doi.org/10.1016/0925-8388(91)90064-3

12. Kh.S.Bagdasarov, E.I.Hetman, N.I.Mikhailichenko et al., Izvestiya AN SSSR. Neorganicheskie Materiali, 5, 1581 (1969).

13. S.D.Han, S.P.Khatkar, V.B.Taxak et al., Mater. Scie. Engin. B, 129, 126 (2006). http://dx.doi.org/10.1016/j.mseb.2006.01.002

14. L.Jiang, Zh.Zhang, Y.Xiao et al., J. Luminescence, 132, 2822 (2012). http://dx.doi.org/10.1016/j.jlumin.2012.05.037

15. A.A.Fotiev, B.V.Slobodin, M.Y.Hodos, Vanadaty. Sostav, Poluchenie, Struktura, Svoystva, Nauka, Moscow (1988) [in Russian].

16. H.M.Rietveld, J. Appl. Cryst., 2, 65 (1969). http://dx.doi.org/10.1107/S0021889869006558

17. J.Rodriguez-Carvajal, T.Roisnel, FullProf.98 and WinPLOTR: New Windows95/NT Applications for Diffraction. Comission for Powder Diffraction, International Union of Crystallography, Newsletter, No.20 (1998).

18. E.M.Levin, J. Amer. Ceram. Soc., 50, 381 (1967). http://dx.doi.org/10.1111/j.1151-2916.1967.tb15136.x

19. H.Brusset, F.Madaule-Aubry, B.Blanck et al., Can. J. Chem., 49, 3700 (1971). http://dx.doi.org/10.1139/v71-617

20. Von H.Schwarz, Zeitschrift fur Anorgani. und Allgem. Chem., 323, 44 (1963). http://dx.doi.org/10.1002/zaac.19633230106

Current number: