Funct. Mater. 2015; 22 (3): 316-321.

http://dx.doi.org/10.15407/fm22.03.316

Plasmon enhancement of thiacyanine J-aggregates luminescence in polymer films

A.V.Sorokin[1], N.V.Pereverzev[1], V.M.Liakh[2],I.A.Borovoy[1], S.L.Yefimova[1]

[1] Institute for Scintillation Materials, STC ”Institute for Single Crystals” National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine
[2] V.Karazin Kharkiv National University, Svobody Sq. 4, 61022 Kharkiv, Ukraine

Abstract: 

Formation of thiacyanine dye J-aggregates in layered polymer films has been studied. This process leads to the J-aggregates spectral bands widening as a result of static disorder increasing. To enhance the J-aggregate luminescence the effect of their interaction with plasmon resonances of silver nanoparticles has been used. It was found that about 4-fold luminescence enhancement for thiacyanine J-aggregates in the polymer films could be obtained at 15 nm distance from silver nanoparticles.

Keywords: 
J-aggregate, exciton, metal nanoparticle, plasmon resonance, luminescence enhancement.
References: 

1. M.I.Stockman, Phys. Today, 64, 39 (2011). http://dx.doi.org/10.1063/1.3554315

2. V.V.Klimov, Phys. Usp., 51, 839 (2008). http://dx.doi.org/10.1070/PU2008v051n08ABEH006794

3. Metal-Enhanced Fluorescence, ed. by Ch.D.Geddes, John Wiley & Sons. Inc., Hoboken, New Jersey (2010).

4. T.Ming, H.Chen, R.Jiang et al., J. Phys. Chem. Lett., 3, 191 (2012). http://dx.doi.org/10.1021/jz201392k

5. S.Kuhn, U.Hakanson, L.Rogobete, V.Sandoghdar, Phys. Rev. Lett., 97, 017402 (2006). http://dx.doi.org/10.1103/PhysRevLett.97.017402

6. K.Ray, R.Badugu, J.R.Lakowicz, Chem. Mater., 19, 5902 (2007). http://dx.doi.org/10.1021/cm071510w

7. Y.Jin, X.Gao, Nat. Nanotech., 4, 571 (2009). http://dx.doi.org/10.1038/nnano.2009.193

8. J.Lee, A.O.Govorov, J.Dulka, N.A.Kotov, Nano Lett., 4, 2323 (2004). http://dx.doi.org/10.1021/nl048669h

9. M.A.Mahmoud, A.J.Poncheri, R.L.Phillips, M.A.El-Sayed, J. Am. Chem. Soc., 132, 2633 (2010). http://dx.doi.org/10.1021/ja907657j

10. A.Yoshida, Y.Yonezawa, N.Kometani, Langmuir, 25, 6683 (2009). http://dx.doi.org/10.1021/la900169e

11. A.V.Sorokin, A.A.Zabolotskii, N.V.Pereverzev et al., J. Phys. Chem. C, 118, 7599 (2014). http://dx.doi.org/10.1021/jp412798u

12. A.V.Sorokin, A.A.Zabolotskii, N.V.Pereverzev et al., J. Phys. Chem. C, 119, 2743 (2015). http://dx.doi.org/10.1021/jp5102626

13. F.Wurthner, T.E.Kaiser, Ch.R. Saha-Muller, Angew. Chem. Int. Ed., 50, 3376 (2011). http://dx.doi.org/10.1002/anie.201002307

14. B.I.Shapiro, Russ. Chem. Rev., 75, 433 (2006). http://dx.doi.org/10.1070/RC2006v075n05ABEH001208

15. J-aggregates, Vol. 1, ed. by T.Kobayashi, World Scientific Publishing, Singapore (1996).

16. J-aggregates, Vol. 2, ed. by T.Kobayashi, World Scientific Publishing, Singapore (2012).

17. Z.S.Pillai, P.V.Kamat, J. Phys. Chem. B, 108, 945 (2004). http://dx.doi.org/10.1021/jp037018r

18. A.Izquierdo, S.S.Ono, J.-C.Voegel et al., Langmuir, 21, 7558 (2005). http://dx.doi.org/10.1021/la047407s

19. N.V.Pereverzev, I.A.Borovoy, O.O.Sedyh et al., Functional Materials, 20, 409 (2014). http://dx.doi.org/10.15407/fm21.04.409

20. Atomic Force Microscopy. Biomedical Methods and Applications, ed. by P.C.Braga and D.Ricci, Humana Press Inc., Totowa (2004).

21. S.L.Yefimova, A.V.Sorokin, I.K.Katrunov, Yu.V.Malyukin, Low Temp. Phys., 37, 157 (2011). http://dx.doi.org/10.1063/1.3556666

Current number: