Funct. Mater. 2015; 22 (3): 338-341.

http://dx.doi.org/10.15407/fm22.03.338

Electroconductivity of anion-radical TCNQ salts containing cations [M(bipy)3]2+ (M - Fe, Ni or Zn)

G.Y.Vasylets[1], A.V.Khotkevich[1],[2], A.S.Bukrinev[1], A.S.Krasnyi[1], V.A.Starodub[3], A.A.Kravchenko[1], V.V.Medviediev[4]

[1] Applied Chemistry Department, V. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
[2] B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., 61103 Kharkiv, Ukraine
[3] Jan Kochanowski University, Institute of Chemistry, Kielce, 25-406, Poland
[4] STC ”Institute for Single Crystals”, National Academy of Sciences of Ukraine, 60 Lenin Ave., 61178 Kharkiv, Ukraine

Abstract: 

Electrical resistance temperature dependence of three TCNQ anion-radical salts of complex composition containing cations [MII(bipy)3]2+ (M - Fe, Ni or Zn, bipy - 2,2′-dipyridil) have been studied. Measurements have been performed in the range 180-300 K on tableted samples. The compound exhibit semiconducting properties and undergo the Peierls transition. Specific resistance at room temperature is of 7.7 Ω·cm for Fe containing salt and
2.3·10-2 Ω·cm and 2.5·10-2 Ω·cm for salts containing Ni and Zn, respectively.

Keywords: 
tetracyanoquinodimethane, electrical resistance, semiconductor, Peierls transition.
References: 

1. Yonghua Chen, Dongge Ma, J. Mater. Chem., 22, 18718 (2012). http://dx.doi.org/10.1039/c2jm32246c

2. Yufeng Liab, Fangfang Jian, J. Mater. Chem. C, 2, 1413 (2014). http://dx.doi.org/10.1039/c3tc31839g

3. V.A.Starodub, T.N.Starodub, Russ. Chem. Reviev, 83, 391 (2014). http://dx.doi.org/10.1070/RC2014v083n05ABEH004299

4. O.Pyshkin, G.Kamarchuk, A.Yeremenko et al., J. Breath Res., 5, 016005 (2011). http://dx.doi.org/10.1088/1752-7155/5/1/016005

5. U.S. Patent 20050179399 A1 (2005).

6. U.S. Patent EP 2179458 A1 (2010).

7. U.S. Patent 7994708 B2 (2011).

8. K.Lewandowska, B.Barszcz, G.Vasylets et al., Synth. Metals, 162, 1577 (2012). http://dx.doi.org/10.1016/j.synthmet.2012.06.017

9. G.Vasylets, V.A.Starodub, B.Barszcz et al., Synth. Metals, 191, 89 (2014). http://dx.doi.org/10.1016/j.synthmet.2014.02.020

10. G.Vasylets, V.A.Starodub, A.Feher et al., Synth. Metals, 194, 7 (2014). http://dx.doi.org/10.1016/j.synthmet.2014.04.011

11. Van der Pauw L.J. Philips Res. Reports, 13, 1 (1958).

12. Yu.V.Zefirov, P.M.Zorkiy, Usp. Khim., 58, 713 (1989). http://dx.doi.org/10.1070/RC1989v058n05ABEH003451

13. S.A.Bewick, Z.G.Soos, J. Phys. Chem. B, 110, 18748 (2006). http://dx.doi.org/10.1021/jp0552022

14. D.Jerome, H.J.Schulz, Adv. Phys., 51, 293 (2002). http://dx.doi.org/10.1080/00018730110116362

Current number: