Funct. Mater. 2015; 22 (3): 342-349.

http://dx.doi.org/10.15407/fm22.03.342

Structure-property relationships in polymer nanocomposites based on cross-linked polyurethanes and carbon nanotubes

E.A.Lysenkov[1], Z.O.Gagolkina[2], E.V.Lobko[2], Yu.V.Yakovlev[2], S.D.Nesin[2], V.V.Klepko[2]

[1] V.Sukhomlynskiy Mykolayiv National University , 24 Nikol'ska Str., 54030 Mykolayiv, Ukraine
[2] Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Shosse, 02160 Kyiv, Ukraine

Abstract: 

The results of experimental and calculation researches of structure, electric and thermophysical characteristics of polymer nanocomposites based on cross-linked polyurethanes (CPU) and carbon nanotubes (CNT) are presented. It is shown that the CPU-CNT systems have a structure with two fractal levels. It is discovered that the CPU-CNT nanocomposites show a percolation behavior, and the concentration dependence of electric- and heat-conductivity are well described in the framework of scaling approach. It is shown that a percolation threshold for these systems is 0.6 %. Formation of the percolation net from CNT, when the content of nanotubes is 0.6 %, was confirmed by the optical microscopy results.

Keywords: 
cross-linked, carbon nanotubes, percolation, fractal structure, scaling.
References: 

1. H.Koerner, W.Liu, M.Alexander, P.Mirau et al., Polymer, 46, 4405 (2005). http://dx.doi.org/10.1016/j.polymer.2005.02.025

2. S.G.Chen, J.W.Hu, M.Q.Zhang et al., Carbon, 42, 645 (2004). http://dx.doi.org/10.1016/j.carbon.2004.01.002

3. Z.Guo, S.Park, H.T.Hahn et al., J. Appl. Phys., 101, 09M511 (2007).

4. H.J.Zo, S.H.Joo, T.Kim et al., Fibers and Polymers, 15, 1071 (2014). http://dx.doi.org/10.1007/s12221-014-1071-5

5. A.Moisala, Q.Li, I.A.Kinloch et al., Compos. Sci. and Technol., 66, 1285 (2006). http://dx.doi.org/10.1016/j.compscitech.2005.10.016

6. E.A.Lysenkov, V.V.Klepko, V.M.Golovanets et al., Ukr. J. Phys., 59, 906 (2014). http://dx.doi.org/10.15407/ujpe59.09.0906

7. L.N.Lisetski, N.I.Lebovka, S.V.Naydenov et al., J. Mol. Liq., 164, 143 (2011). http://dx.doi.org/10.1016/j.molliq.2011.04.020

8. O.Deriabina, N.Lebovka, L.Bulavin et al., Physica E: Low-dimens. Syst. and Nanostruct., 59, 150 (2014). http://dx.doi.org/10.1016/j.physe.2014.01.017

9. L.Zunfeng, B.Gang, H.Yi et al., Carbon, 45, 821 (2007). http://dx.doi.org/10.1016/j.carbon.2006.11.020

10. R.Zhang, A.Dowden, H.Deng et al., Compos. Sci. and Technol., 69, 1499 (2009). http://dx.doi.org/10.1016/j.compscitech.2008.11.039

11. J.Wang, H.Xu, D.Yang et al., Compos. Fibers and Polymers, 14, 571 (2013). http://dx.doi.org/10.1007/s12221-013-0571-z

12. Technical Condition 113-03-413-89, Isocyanates. The Method of Mass Content of Isocyanate Groups (1989).

13. A.V.Melezhyk, Yu.I.Sementsov, V.V.Yanchenko, Prikl. Khim., 78, 938 (2005).

14. Yu.S.Lipatov, V.V.Shilov, Yu.P.Gomza, EN.E.Kruglyak, The Methods of X-ray Diffraction for the Investigation of Polymer Systems. Naukova Dumka, Kiev (1982) [in Russian].

15. C.G.Vonk, FFSAXS's Program for the Processing of Small-Angle X-ray Scattering Data, DSM, Geleen (1974).

16. A.Kyritsis, P.Pissis, J.Grammatikakis, J. Polymer Sci.: Part B: Polymer Phys., 33, 1737 (1995). http://dx.doi.org/10.1002/polb.1995.090331205

17. R.V.Dinzhos, N.M.Fialko, E.A.Lysenkov, J. Nano-Electron. Phys., 6, 01015 (2014).

18. N.Cameron, J.M.G.Cowie, R.Ferguson et al., Europ. Polym. J., 38, 597 (2002). http://dx.doi.org/10.1016/S0014-3057(01)00193-8

19. M.C.Garcia-Gutierrez, A.Nogales, J.J.Hernandez et al., Opt. Pura Apl., 40, 195 (2007).

20. G.Beaucage, J.Hyeonlee, Se.Pratsinis et al., Langmuir, 14, 5751 (1998). http://dx.doi.org/10.1021/la980308s

21. L.A.Hough, M.F.Islam, B.Hammouda et al., Nano Letters, 6, 313 (2006). http://dx.doi.org/10.1021/nl051871f

22. D.Stauffer, A.Aharony, Introduction to Percolation Theory, Taylor and Francis, London (1994).

23. S.Kirkpatrick, Phys. Rev. Lett., 27, 1722 (1971). http://dx.doi.org/10.1103/PhysRevLett.27.1722

24. E.A.Lysenkov, Y.V.Yakovlev, V.V.Klepko, Ukr. Phys. J., 58, 378 (2013). http://dx.doi.org/10.15407/ujpe58.04.0378

25. J.Zhang, M.Mine, D.Zhu et al., Carbon, 47, 1311 (2009). http://dx.doi.org/10.1016/j.carbon.2009.01.014

26. M.T.Connor, S.Roy, T.A.Ezquerra et al., Phys. Rev. B, 57, 2286 (1998). http://dx.doi.org/10.1103/PhysRevB.57.2286

27. E.A.Lysenkov, V.V.Klepko, J. Nano-Electron. Phys., 5, 03052 (2013).

28. Y.Xu, G.Ray, B.Abdel-Magid, Compos. A, 37, 114 (2006). http://dx.doi.org/10.1016/j.compositesa.2005.04.009

29. O.M.Garkusha, S.M.Mahno, G.P.Pryhodko et al., Chem. Phys. Technol. Surf., 1, 103 (2010).

30. B.-W.Kim, S.-H.Park, R.S.Kapadia et al., Appl. Phys. Lett., 102, 243105 (2013). http://dx.doi.org/10.1063/1.4811497

Current number: