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A new chirality quantification scheme is proposed based on a special procedure trans-
forming molecular pseudoscalar into positive index. The optical rotatory strengths (esti-
mated semiempirically) are used for the corresponding characterization of chiral mole-
cules. We show several specific examples of using the present method. The focus is made
on dissymmetric m-conjugated systems constituting some special molecular materials (heli-
cens etc.). A simplified technique of partitioning the chirality index into atomic contribu-
tions is reported. For most presented examples, the atomic distribution of chirality are
found to be highly delocalized over the whole carbon backbone.
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twisted conjugated hydrocarbons

Ilpennosxkena HOBas KOJUUYECTBEHHAS Mepa MOJEKYJIAPHON XupadbHocTu. OHA OCHOBAHA
HA CIEeNUaNLHON Tpoleaype, TPeodpasyonieil MOJeKYAAPHEIH TICEBAOCKANAD B MOJOMKUTEb-
HBEIH WHAeKCc. [[JIA COOTBETCTBYIONMIEH XapaKTepM3aINU XUPAJLHOCTH WCIOJL3YVIOTCSA paccuu-
TAHHBIE TIOJYIMIUPHUUYECKN CUJLI ONITUYECKOTO BpalleHudA. [IpuBeieHO HeCKOJLKO XapaKTep-
HBIX TTPUMEPOB HMCIOJb30BAHUSA MPEAJ0oKeHHOoTO MeTona. OCHOBHOWM aKIleHT cIeNaH Ha ANC-
CUMMETPUUYECKUX T-COMPSMKEeHHBIX CUCTEMaX, BXOJAIINX B COCTAB DPAJA CHEIUATbHBIX
MOJEKYJAPHBIX MATEPUAJOB (B YaCTHOCTH, KJjacca Tequiienon). Ommucana ynopoleHHas MeTo-
IUKa pasdueHMa WHAEKCA XUPAJTLHOCTH Ha ATOMHBIE BKJIAABI. B GONBIIMHCTBE TpPeACTABIEH-
HBEIX B CTaThe NPUMEPOB ATOMHOe pacIpefejieHMEe XWPAJILHOCTH OOHAPYIKUBAET BBICOKYIO
CTEIEeHD MeJ0KAMU3AIUY TI0 COOTBETCTBYIOIIEMY YTJIEPOLHOMY OCTOBY.

ITo3utTuBHa Mipa XipaJBHOCTI 3 XiPONTHYHUX NHCEBAOCKANAPIiB. 3aCTOCYBAHHA O BYT-
JEeUBMIiCTKHX MOJIEKYJISIPpHUX cucteM. A.B.JIy3aHos6

3amponoHoBaHO HOBY KiNbKicHY Mipy MojeKyaapHoi Xipanbmocti. Boma 6asyeTbca Ha
creliasbHiB Tpoleaypi, M0 IIePeTBOPIOE MOJEKYIAAPHUHN NICeBAOCKANADP Y IO3UTUBHUH
ingexc. na BigmoBigmol xapakTtepusarlii xipaabHOCTI BUKOPMCTOBYIOTHLCA CHUJIM OINTUYHOTO
obepraHHa y HamiBeMmipumuHomy Habnm:xenni. HaBemeHo merinbKa XapaKTepHUX TPUKJIATIB
BUKOPUCTAHHA 3ampomnoHoBaHorTo migzxoxy. I'osoBHMIT aKIeHT 3pobJieHO Ha AMCCHUMETPUYHi
T-CIIPAMKEH]1 cucTeMu, 110 BXOAATHL A0 CKJQAY HUBKU CHENiaJbHUX MOJEKYJIAPHUX MarTe-
piamie (sokpema, resimeHoBoro KJacy). OKpecleHO CIpOIIEHY MeTOAWKY NOAiNy iHgercy
xXipanrbHOCTI Ha aTOMHi cKJamoBi. ¥ OiablmocTi mpUKJAAAiB, M0 iX MpeAcCTaBJEHO Yy CTaTTi,
ATOMHUH PO3TOMIJ BU3HAUAETHCA 3HAUHOIO JEJOKANIZAIi€l0 XipaJbHOCTI 3 BiATIOBIAHOTO BYT-
JIeleBOTO OCTOBA.

1. Introduction chirality (see, e.g.,[]1-10]). More than
An important feature common to many 150 years after Pasteur’s brilliant break-

modern sciences is the universal notion of through, molecular chirality is still a topi-
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cal issue of broad scientific and engineering
interest. However, the molecular chirality
measurement remains an elusive problem.
Usually, Kitaigorodski [11] is cited as the
first who outlined a rather general theoreti-
cal scheme for quantificating molecular chi-
rality by the nonnegative measure. This
measure was identified with a maximal
overlap volume of left- and right-handed en-
antiomers (see [12, 13] for detail and fur-
ther development). There exist now a great
number of approaches which can more or
less satisfactorily describe the molecular
chirality (or simply, chirality). Reviews
[14-19] and recent papers [20-24] are a
good source of references to published de-
scriptions of the previously given proce-
dures, and we will not attempt to duplicate
these references.

We only stress that it is important to
distinguish between scalar and pseudosca-
lar chirality measures. The usual nonnega-
tive (simply, positive) measures, which are
based on a formal mathematical reasoning,
are, of course, the scalar quantities. The
essential advantage of them is that by con-
struction the positive scalar measures are
nonzero if and only if the system in study
is chiral. Another kind of the indices are
the pseudoscalar measures. A fundamental
property of the pseudoscalars is to have op-
posite signs for left- and right-handed enan-
tiomers (optical antipodes). The physical
and physicochemical chirality manifesta-
tions are just described by pseudoscalars
(chiroptic effects, twisting power of a chiral
dopant in nematics, violating parity conser-
vation etc.). We must also recognize an im-
portant merit of the physical pseudoscalars,
namely their additivity (additive separabil-
ity, in quantum-chemical terms). It provides
a correct behavior of pseudoscalar quanti-
ties in wvarious physicochemical processes
(e.g., the pseudocalar measures vanish for
the racemats). It is also possible to con-
struct the special pseudoscalars which offer
suitable independent quantification schemes
[25—-29]. However, as clearly shown in [27,
30], in this way one may face with unex-
pected difficulties.

In the last two cited works, a behavior of
arbitrary pseudoscalar chirality measure on
reaction paths is considered. It is proved
the occurence the so-called chiral zeros for
any chiral structure [30]. This means that
there always exists such a reaction point
where the given pseudoscalar quantity van-
ishes even for the surely chiral configura-
tion. From this result the authors of [30]
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inferred that positive chirality measures are
the only permissible quantities for chirality
quantification.

Nevertheless, the positive measures have
their own drawback. Namely, unlike
pseudoscalars, the such measures never ful-
fill the important requirement of additivity
(this fact was found in our study [31]). It
poses an unresolvable dilemma which cannot
be avoided in any chirality theory, although
most researchers in the field seemingly do
not suspest about this fact. In this situ-
ation, we should choose the less imperfect
between the above alternatives. Positive sca-
lar measures seem to be more preferable
because they are nulled only on achiral
structures. At the same time, pseudoscalar
quantities are more rooted in the physical
nature of molecular chirality. A possible
way to somehow reconcile the two ap-
proaches is to produce positive chirality
measures from physical pseudoscalars.This
is the wunderlying phylosophy which is
adopted in the present paper.

More specifically, the goal of the study
below is to elaborate a new chirality quanti-
fication scheme based on the optical rota-
tion theory. In so doing we invoke, for cor-
responding electron problems, an elemen-
tary semiempirical technique in the form of
the extended Huckel theory (EHT) [32, 33].
It enables us to make computations easily
even for large chiral molecules.

2. Optical rotatory polarizability

At first, we recall basic relations of the
quantum theory of optical activity. For sim-
plicity, all the expressions will be given
here for the ground electronic state. In the
required context, the key quantity is the
so-called rotatory (or electric-dipole mag-
netic-dipole) polarizability [34]. We define
it, up to a non significant constant, by the
expression

~ R;
o) =3 ot (1)

j

Here o is a formal variable (the incident
light frequency, in practice), R; is a rota-
tory strength (see below) for electronic
transition 0 —» j with excitation energy 7»]-.
The fundamental quantities in Eq.(1) are
the rotatory strengths R;. They are com-
puted from matrix elements of the full elec-
tronic momentum, P, and angular momen-
tum, L, as follows:
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R; = Im[(WolP]¥}) - (WolL¥p1/2; ()

with [¥y) and [¥;) being the ground and
excited state wave functions, respectively.
The rotatory strengths obey the Rosenfald
sum rule [35]:

SR -0, ®

Eq. (1) loses validity near the resonance
values ® = A; where a resonance-line shape
with finite width is required. The conven-
tional resonance shape is the Lorentian one.
Then the respective expression for rotatory
polarizability is

(2 - )R, (4)
[0F - 0?2 + (Tjw)2]’

Blw) =),

J

where Fj is a width parameter for transition

0 — j [36]. These standard relations will be

basic for all that follows. Plot of rotatory

polarizability (4) against frequency m gives

in fact optical rotatory dispersion (ORD)
curve.

3. Chirality from positive and
negative parts of optical rotations

In searching ways to the new positive
chirality index, let us look with more scru-
tiny at Eq. (4). From Eq. (3) it follows that
there exist positive values of rotatory
strengths together with negative ones. We
denote the positive Rj by Rj+ and negative
R]- by Rj’. Then the corresponding sums

R-SH R SE

satisfy the rule Rt + R~ = 0 as a consequence
of sum rule (3). It may be tempting to intro-
duce the positive chirality measure as

R, =|Rt - R )

However, such a quantity (justifiable in
principle) can be inappropriate in practice,
as is clear from a detailed analysis in Ap-
pendix A.

One of the source of this unsuitability is
due to the fact that for possible degenerate
states the respective energy sublevels can
produce incorrect (i.e., nonzero) rotatory
strengths in achiral molecules. Only appro-
priate combinations of contributions from
degenerate states give the correct (zero) re-
sults for the such specific symmetry sys-
tems. Unfortunately, this peculiarity is in
fact impossible to take into account in pro-
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gramming numerical algorithms. At the
same time, rotatory polarizabilities always
behave correctly because degenerate states
of any symmetry contribute properly to
B(w), if employing Eq. (4).

We see that B(w) rather than a set {R;}
should be used in this setting. We suggest
that instead of RT and R™, the positive and
negative parts of P(w) must come into play.
We define them as follows:

B (@) = B(w), if B(w) > 0, (6)

otherwise f*(w) =0,

B (w) = B(w), if B(w) <0, (7
otherwise B (w) = 0.

These functions should be integrated
over the characteristic frequency range
[0, ®,4.], and it produces "chirally signifi-
cant” areas restricted by curves BT(w) and
B~ (w), respectively:

(DIUQX wmax (8)

It= IB+(w)dw, I-= J.B‘(w)dw.
0 0

Then the difference
Xpor=1F— I~ 9

makes the new positive chirality measure.
Unlike |RT — R, this index correctly differ-
entiates all chiral and achiral species. The
above procedure transforming the pseudos-
calar sets to positively defined quantities
can be easily extended to other pseudoscalar
chirality measures.

4. Chirality index Y,,; within EHT

Now we describe in more detail the pro-
posed scheme for chirality characterization
of electronic systems from which many mo-
lecular materials are composed, in particu-
lar biomaterials. However, in this work we
restrict ourselves by carbon-containing sys-
tems. There are no technical restrictions
for extending our program code to treat
molecules which include heteroatoms.

The EHT model [32] is used here to sim-
ply produce all-valence molecular orbitals
(MO) needed at the electronic level of the
problem. The underlying EHT one-electron
Hamiltonian is easy to compute for very
complex molecules. Thus, we assume that
the Hamiltonian matrix is constructed
semiempirically, and one-electron coordinate
matrices {X,Y,Z} are calculated in the
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standard valence Slater-type AO (atomic or-
bital) basis [387]. The eigenstates of A0 are
MOs which will be denoted by kets |(pk).
Eigenvalues of h® correspond to orbital en-

ergies ¢,. With this, the momentum matri-
ces {P*, PY, P?} are obtained by the usual
commutation relations:

PX = —i(hOX — XhO). (10)

Accordingly, angular momentum matri-
ces in the AO representation are computed,
e.g., L¥*=27ZPY —YPZ etc. If so doing the
usual Hermitization procedure should be ad-
ditionally applied by computing L*¥ = [L* +
(L¥]"/2 ete.

In the Huckel-like one-electon approxi-
mation, excited states are trivially formed
by promoting occupied MO |¢;) to vacant
(virtual) MO |(pa), so excitation energies are

Misa = € = & (11)

Then the working expression for rotatory
polarizability (4) is

occ vac ( 2)

B(w) = 2 2 Bi_sq(®),

B (@)= MM g — 07) (13)
e [0F,q = 022 + [0 7"
with R; ,, being the rotatory strength for

one electron transition i — a:

Ry o = Im[PGLG; + PYiLy; + PEiL31/ Mo six(14)

ar—at ar—a

where one-electron matrix elements P ;* =

(9,/P¥|p;) and so on. Moreover, I'; ,, = OA;_,,

and o is a damping factor (in practical com-
putations we put (= 0.2). Egs. (10)—(14) are
easily programmed, and the computations
on rather large systems can be efficiently
performed even by using laptops.

An important point is concerned with the
numerical integration procedure needed for
obtaining index (9) numerically. In our
work, the trapezoidal method of integration
is utilized. This method should only be used
with a sufficiently large number of nodes
for integration. Indeed, in pactice the func-
tions BT(w) and B(w) turn out to be rather
highly oscillatory, exhibiting a great num-
ber of extreme peaks.
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5. Chirality characterization of
typical molecular structures

In this section we present several illus-
trative examples of computing chirality
measure (9) (see Tables 1-3). The examples
are mainly taken from [21, 381] and structural
chemistry literature [38, 89]. Among them,
carbo[n]helicenes are of significant interest as
unusual molecular materials [40].

For all our computations, AM1 optimized
geometrical data are used. The values of
Xrot i the tables are expressed in relative
units of %x,,;[CgHqo], that is the chiralty
measure for the cyclohexane molecule in the
Dy, symmetric conformation (explicitly,
XrotlCeH12] = 12.64 atomic units (a.u.)). In
Table 1, together with yx,,;, we give plots of
the dependency of P(w) versus o (all in
a.u.). Within the EHT approximation, they
present the modelled ORD curves in the
wide excitation energy (w) range [0,2]
where, in fact, all active one-electron exci-
tations are lumped. For convenience, ordi-
nate values in plots of Table 1 are scaled by
a factor of 1072,

Referring to the data of Tables 1-3, it
seems that the proposed chirality index pro-
vides a quite resonable chirality discrimina-
tion if judging from the geometrical shape
of molecules in question. At the same time
one must keep in mind that y,,;, as defined
by Eq. (9) from P(w), reflects, first of all,
the electronic rather than geometrical chi-
rality. For instance, x,,; is varying due to
various nongeometrical factors, e.g., under
electronic excitation.

In order to describe molecular chirality
in pictorial terms we use the additional
technique of visualization which allows us
to approximately assign to each atom A a
certain local quantity thA. The visualiza-
tion method is explained in Appendix B.
From the results presented in Tables 2 and
3 where atomic distributions {y,,*}, are
given we see that in all system, even in the
fully asymmetric butylethylmethylpropyl-
methane (BEMPM) [41] molecule, the chirality
is delocalized over almost all carbon atoms
of the molecule. As expected, the contribu-
tion of hydrogen atoms is small, especially
in unsaturated systems, and in Table 3 we
suppress the hydrogen atoms in the respec-
tive distributions. However, certain regions
of the carbon backbone can be significantly
more involved in the chirality formation than
others. It is quite well seen in the BEMPM
molecule (the first system in Table 2). Notice
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Table 1. Chirality measure ,,, (in units of y, ,[CgH,5]) for dissymmetric structures with C, and D,
spatial symmetry and modelled ORD curves within EHT

Structure
(symmetry) Kror QRE
1,3-Diphenylallene 15
1
1.4 03
d—b 65—~ 15 2
- 0.5\
Tritwistane (D3) 05 /\
[N\
0.5 1 15 2
32 | .05
-1
5—Layered Cyclophane
4
2
5.3 AT
o5~ 4 15 2
- 2
-4
Propellicene (D)
4
2
A~
792 - Yids 1 15 2
-4
-6
-8
[12]Helicene (Cy) 10
)
V'Vo3 1 15 2
-5
-10

that this molecule is fully saturated (no
double bonds), and has a small chirality
index. Another example is given in Table 3
where the results for the partially conju-
gated o-carotene molecule are presented. In
this case we also observe a preferable local-
ization of chirality — on the left cyclo-

hexene ring of the carotene.
Much more chiral are specifically curved

and twisted conjugated hydrocarbons (rest
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of the systems in the Tables). In the case of
the m-terphenyl (see Table 2), the central
ring is more chiral. The example of 1,3-
diphenylallene in Table 2 is interesting as a
typical case of the molecule with chiral axis
(in the present case, it goes through carbon
aroms of the allene subunit). We observe
that the central atom of the chiral axis is
just the atom which is markedly more "chi-
ral” than other ones. However, for more
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Table 2. Chirality measure Y,,, (in units of ¥,,,[CgH,5]) and the full atomic chirality diagram {thA}

(C2)

(C2)

ymmety | o o)
N
\\fv
BEMPM 0.7 28 l. L
TGN
[ ! |
PN
\/
[5]Triangulane 08 \ /\ ]‘

. b ? ;
1,3-Diphenylallene | 1.5 A - o N
a— | i e
(C2) \ -~ _ '
e N
i [
!
o Na
m-Terphenyl 57 : | | :
(c2) A A AL
f |
./’\ ] N /‘\'
: !
1 [
N~ NN N
S Y A
N e N N
Hexahelicene 57 \ \ / |

< e N NN
| | |

& TN N T

Lo

complex systems, such as the propellicene
molecule (Table 3), chirality distribution is
rather delocalized over the whole molecule.

6. Conclusion remarks

In this paper we have presented a rather
general scheme that transforms pseudosca-
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lars (which are not always reliable for indi-
cating chirality) into a positive chirality
measure. The scheme is specified here for
the case of pseudoscalar rotatory strengths
which determine optical activity of chiral
molecules. We analyze several typical
dissymetrical systems having proper rota-
tion groups C, and D,, and fully asymetri-
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Table 8. Chirality measure Y,,, (in units of ¥x,,,[CgH;,]) and the omplete atomic chirality diagram

{thA} for selected structures (hydrogen atoms are suppressed)

Structure

2,7-Diphenylnaphthalene

(C2) 3.1
« —Carotene 48
Propellicene (D2) 7.7

4
(Sym m etry) X rot { Zrot }

[\
[2,2]Vespirene ‘ ~o" SN ’

]

/\/\/\/\/\
| / \ \

" N
| |
l, ANANA Te.
-~ .
N NN N
' |
\
—a s e
~ L o N ~
A~g” Na—O
| |
~o_ ¢ No—a” N
N s S

cal systems. Overall, results suggest that
the new degree of chirality y,., serves as a
suitable measure of molecular chirality
treated at an electronic level. This feature
distinguishes the index from many other ex-
isting measures which are normally based
on formal geometric or topological reason-
ing. The additional analysis provides a pic-
torial representation in form of diagrams
showing approximately the distribution of
the chirality over atoms in molecule. We
see that the frequently used notion of the
local chirality is not approptiate to describe
generally too complicated and globalized
features of the molecular chirality. It is es-
pecially valid for the dissymmetric m-conju-
gated structures which are the main illus-
trative focus of this paper.

Some critical points should be made about
the used computational scheme. Here the
basic scheme has been implemented within
EHT, that is the simplest semiempirical ap-
proximation for valence shells. Much more
reliable results are likely to be obtained by
the standard ab initio Hartree-Fock model
even with a modest basis set, say, the compu-
tationally not too expensive 6-31G. However,
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for this we need bring in more powefull
computational tools. Another point where
further improvement should be made is
using more precise numerical integration
technique needed for Egs. (8) (as well as for
Eq. (23) in Appendix B). The Gauss-Kron-
rod scheme is the technique that our re-
liminary study points to as a more viable.
At last, additional pseudoscalar quantities,
such as considered in [25, 26, 42], are
worth being investigated in the same man-
ner as rotatory strengths (2). These issues
will be a subject of future work.

Appendix A. Snags of using absolute val-
ues of rotatory strengths

This appendix aims to elucidate the diffi-
culties of using the auxiliary index R, , Eq.
(5). We will see that the difficulties are
closely related to computing rotatory
strengths R;, Eq. (2), for high-symmetry
systems. For these systems, degenerate
states occur, and the situation is formally
the same as in the case of usual optical
transitions and corresponding oscillator
strengths (see p.98, Eq. (2) in [48]). In our
case we assume the ground state |‘I—’0) to be
nondegenerate, and the jth excited state to
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Table 4. Auxiliary index R, and chirality index Y, ,, for the spiro[3.3]heptane molecule taken with
approximate D,; geometry. The R, value is given in a.u.

Spiro[3.3]heptane) R Kot ORD
0.00025[ M\ /\/\/\
1 157 2
46.3 | 0.00002 | 20002
- 0.00075
- 0.001

be degenerate. Then, instead of a single ex-
cited state |‘Pj) we must take into account
the whole degenerate set {|le(a)>}1Socs\/i with v;

being a degree of degeneracy. The correct
formula (see also Eq. (24) in [44]) is

v, (15)

]
_ o
R;= Y R®
o=1
where

R(® = Im[(Wo|PI(®) - (WolL[¥(®) /2. (16)

A stumbling block here is that in the nu-
merical computations over a large array of
states we cannot beforehand know whether
the given rotatory strength belongs to the
"degenerate” set, say a set {R/(®}, or mnot.
Indeed, in finite precision computations, the
excitation spectrum is only approximately
degenerate (quasidegeneracy). For suffi-
ciently large molecules, the problem is ag-
gravated due to lumping energy levels very
densely together, thus preventing their un-
ambiguous identification. That is why we
prefer using rotatory polarizability (4)
which automatically gives correct contribu-
tions of all degenerate excitations. In prac-
tice, not all degenerate states are source of
troubles, but the difficulties are quite possi-
ble even for simple symmetric molecules.
The numerical example of the achiral
spiro[3.3]heptane molecule (Dyy symmetry)
helps to clarify the point. In Table 4 we
present the corresponding numerical results
for the auxiliary index R, , Eq. (5), and the
main chirality index (9). We see that in
practice R, cannot universally serve the
chirality quantification. The cause is that
the individual R; values may be really incor-
rect, as stated above (if no exact grouping
of states, {Rj(o‘)}, is involved). For instance,
take only the lowest one-electron excitation
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HOMO—LUMO of the molecule in question
(HOMO and LUMO are acronyms for highest
occupied MO and lowest unoccupied MO, re-
spectively). Within the EHT model, the non-
degenerate HOMO is of symmetry B,,
whereas the doubly degenerate LUMO is of
symmetry E. Thus, we have here two
HOMO—LUMO contributions, R and R(2).
Numericaly they, being almost the same by
the absolute value, are opposite in sign:

R(M) = -0.0684436, R = 0.0684438.

Of course, Eq. (15) provides the correct
numerical result R(1) + R(2) = 2.10"7. How-
ever, if we take the sum |R(D|+ |R®)|=
0.1368874 (as our program performs com-
putations on Eq.(5)), then the wrong conclu-
sion about chirality of the achiral spiran is
drawn. At the same time, by using Eq.(9)
we avoid such incorrect results.

We must also add that above troubles
(with nonzero R, for achiral systems) are
rare, and in principle the R, index could be
used for surely chiral systems. However,
for the sake of completeness, another draw-
back of R, should be stressed. It is a scal-
ing property of this index. Let n, is the
number of the occupied MOs, and ny is that
of the vacant MOs. Then R, is scaled, ap-
proximately, as nonV~N2, where N is a
total number of electrons. We see that gen-
erally R, can increase too quickly with in-
creasing size of chiral systems, and such a
behavior makes the index not well suitable
for quantification purposes.

Appendix B. An approximate technique
for computing local comtributions

In order to compute local (atomic) chiral-
ity contributions {x,,4}, we adopt the pre-
viously given scheme for electronic excita-
tion localization [45]. This allows us to de-
compose each term f, ,(0w) into atomic
contributions. Thus we can represent an
atomic structure of the overall B(w) values
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(13), from which the resulting index ¥, is
computed. More exactly, we start with a
quite understandable formula describing the
excitation indices of one-electron transition
i > a. We define the usual atomic localiza-
tion distributions for occupied MO |p;) and
vacant MO |o,)

L[] = Y Knlonl, an
ne A

Lalog] = Sht0a) (18)
uwe A

where [y,) is taken from the full orthonor-
mal set of AOs, and subscript A denotes the
selected atom in molecule. The correspond-
ing excitation index L,(i—a) is identified
with the evident expression (see Eq. (19) in
[45] and Eq. (6.9) in [46]):

Ly(i—a) = (Lyle;] + Lalo,D /2. (19)

Then we can introduce the related atomic
contribution B(i—m)(w) L,(i—a) for each term
B(i—m)(w) in Eq. (12). From here it follows
that for rotatory polarizability the atomic
localization index, B4(w), is of the form

occ vac (20)
Ba@) = Y Biu(@Ly(i—a),

so that the exact sum rule

Y Ba(®) = ) C2y)
A

obeys automatically. However, we encounter
difficulties if we try to obtain atomic chi-
rality indices thA by replicating the algo-
rithm for the whole chirality index y,,; (see
Section 4). We can somehow use the men-
tioned algorithm, but we cannot guarantee
that the corresponding sum rule will be ex-
actly satisfied. More or less well working
scheme is based on the following rexpres-
sions. For each atom A, we make up the
positive and negative components of f,(w):

Pia(@) = Ba(w), if P(w) > O,
otherwise B}(w) =0,

Ba(w) = By(w), if f(w) < 0O,
otherwise f;(w) =0. (22)
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Thus, having computed the integrals

Omax Omax (23)
Iy = f Bi(w)dw, Iy = f Ba(w)do,
0 0

we find an approximate atomic chirality
index:

Xone =T — I3 (24)

In practice, these indices obey only a
fairly accurate sum rule:

Zxéot = Xrot (25)
A

(with an accuracy near 5 %). Sometimes,
few values in {X,,/A} (one or two values) can
be quite small but negative, and in these
cases these small contributions are taken in
their absolute value.

The specific calculations are given in Ta-
bles 2 and 3, where distributions {y,,A} are
depicted by the colored circles (green (1) for
carbon atoms and red (2) for hydrogen
atoms) with radii roughly proportional to
\lx‘;lot. Notice that we observed a highly de-

localizated chirality distribution for most
molecular systems treated in the present
paper. This fact is in concordance with the
entirely another study (of other systems)
based on a direct partitition scheme for rota-
tory stengths R; [47, 48].
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