Funct. Mater. 2015; 22 (4): 429-433.

http://dx.doi.org/10.15407/fm22.04.429

Obtaining and scintillation properties of crystals based on Eu2+ doped Ba(Br0.9Cl0.1)2 solid solution

V.L.Cherginets1, Yu.N.Datsko1, A.Yu.Grippa1, T.V.Ponomarenko1, N.V.Rebrova1, T.P.Rebrova1, T.E.Gorbacheva1, A.V.Lopin2, O.G.Trubaeva1, V.Yu.Pedash1

[1] Institute for Scintillation Materials, STC "Institute for Single Crystals ",National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine
[2] Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

Scintillation crystals based on BaBr2-BaCl2 solid solution corresponding to minimal melting point in the phase diagram doped with Eu2+ (from 0.3 to 3 mol. %) were grown by Bridgman-Stockbarger method. The X-ray luminescence spectra of pure matrix of Ba(Br0.9Cl0.1)2 composition includes wide emission band with the maximum which position is placed near 410 nm. The emission spectra of the Eu2+-activated materials contain narrow bands with the maxima at 411-413 nm. The absolute light yield of Ba(Br0.9Cl0.1)2:Eu2+ material doped with 3 mol. % of the activator is ca. 32600 photons per MeV and the best energetic resolution is 9.5 %. The decay curve for the studied materials is described by one component with the time constant of 70 ns. Distribution coefficient of Eu2+ in the studied matrix is estimated as k = 0.72±0.05. All the obtained parameters are close to those of BaBr2:Eu2+ single crystals obtained under similar conditions.

Keywords: 
Scintillation crystals, uminescence, solid solution.
References: 

1. R.Borade, E.Bourret-Courchesne, S.Derenzo, Nucl. Instr. Meth Phys. Res., A, 652, 260 (2011).

2. E.D.Bourret-Courchesne, G.Bizarri, R.Borade et al., Nucl. Instr. Meth Phys. Res., A, 612, 138 (2009).

3. E.D.Bourret-Courchesne, G.Bizarri, S.M.Hanrahan et al., Nucl. Instr. Meth Phys. Res., A, 613, 95 (2010).

4. V.L.Cherginets, A.Yu.Grippa, T.P.Rebrova et al., Functional Materials, 19, 187 (2012).

5. V.L.Cherginets, N.V.Rebrova, A.Ya.Grippa et al., Mater. Chem. Phys., 143, 1296 (2014). http://dx.doi.org/10.1016/j.matchemphys.2013.11.037

6. V.I.Posypaiko, E.A.Alekseeva, N.A.Vasina, Fusibility Diagrams of Saline Systems. Pt. III. Systems with Common Cation, Handbook, Metallurgia, Moscow (1979) [in Russian].

7. K.G.Rajan, A.J.Lenus, Pramana - J. Physics, 65, 323 (2005)

8. G.Gundiah, Z.Yan, G.Bizarri et al., J. Luminescence, 138, 143 (2013). http://dx.doi.org/10.1016/j.jlumin.2013.01.017

9. V.L.Cherginets, T.P.Rebrova, Yu.N.Datsko et al., J. Chem. Eng. Data, 55, 5696 (2010). http://dx.doi.org/10.1021/je100643g

10. A.Yu.Grippa, N.V.Rebrova, T.E.Gorbacheva et al., J. Cryst. Growth, 371, 112 (2013). http://dx.doi.org/10.1016/j.jcrysgro.2013.02.020

Current number: