Funct. Mater. 2015; 22 (4): 434-439.

http://dx.doi.org/10.15407/fm22.04.434

Luminescent properties of LaI3-Ce microcrystals embedded in NaI host

A.S.Pushak1, V.V.Vistovskyy2, T.M.Demkiv2, Yu.R.Datsyuk2, I.M.Kravchuk3, L.T.Karplyuk2, A.V.Gektin4, A.S.Voloshinovskii2

[1] Ukraine Academy of Printing, 19 Pidgolosko Str., 79020 Lviv, Ukraine
[2] I.Franko National University of Lviv, 8 Kyryla i Mefodiya Str., 79005 Lviv, Ukraine
[3] Lviv Polytechnic National University, 12 S.Bandery Str., 79000 Lviv, Ukraine
[4] Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

Luminescence-kinetic properties of LaI3-Ce microcrystals of 1-10 μm size in NaI-LaI3-Ce system are studied upon 2.5-12 eV excitation using synchrotron radiation. The luminescent properties of cerium centers in the embedded LaI3-Ce microcrystals are revealed to be similar to those for the bulk LaI3-Ce crystals. The mechanisms of cerium centers luminescence excitation in the NaI-LaI3-Ce crystalline system upon excitation in the transparency and fundamental absorption range of NaI and LaI3 matrixes and mechanisms of thermal quenching of cerium ions luminescence in the LaI3 microcrystals are discussed.

Keywords: 
luminescence quenching, luminescence decay kinetics, LaI<sub>3</sub>-Ce microcrystals embedded in NaI host.
References: 

1. E.V.D.van Loef, P.Dorenbos, C.W.E.van Eijk et al., Appl. Phys. Lett., 77, 1467 (2000). http://dx.doi.org/10.1063/1.1308053

2. E.V.D.van Loef, P.Dorenbos, C.W.E.van Eijk et al., Appl. Phys. Lett., 79, 1573 (2001). http://dx.doi.org/10.1063/1.1385342

3. E.V.D.van Loef, P.Dorenbos, C.W.E.van Eijk et al., Nucl. Instrum. Meth. Phys. Res. A, 486, 254 (2002). http://dx.doi.org/10.1016/S0168-9002(02)00712-X

4. A.Bessiere, P.Dorenbos, C.W.E.van Eijka et al., Nucl. Instrum. Meth. Phys. Res. A, 537, 22 (2005). http://dx.doi.org/10.1016/j.nima.2004.07.224

5. K.W.Kramer, P.Dorenbos, H.U.Gudel et al., J. Mater. Chem., 16, 2773 (2006). http://dx.doi.org/10.1039/B602762H

6. K.S.Shah, J.Glodo, M.Klugerman et al., Nucl. Instrum. Meth. Phys. Res. A, 505, 76 (2003). http://dx.doi.org/10.1016/S0168-9002(03)01024-6

7. A.S.Pushak, V.V.Vistovskyy, S.V.Myagkota et al., Functional Materials, 17, 294 (2010).

8. A.S.Pushak, P.V.Savchyn, V.V.Vistovskyy et al., J. Luminescence, 135, 1 (2013). http://dx.doi.org/10.1016/j.jlumin.2012.10.008

9. V.V.Vistovskii, A.S.Pushak, S.V.Myagkota et al., Optics Spectrosc., 109, 352 (2010). http://dx.doi.org/10.1134/S0030400X10090079

10. A.Voloshinovskii, A.Gloskovsky, S.Zazubovich et al., Phys. Stat. Sol. B, 225, 257 (2001). http://dx.doi.org/10.1002/(SICI)1521-3951(200105)225:1<257::AID-PSSB257>3.0.CO;2-H

11. A.S.Pushak, V.V.Vistovskyy, T.M.Demkiv et al., Optics Spectrosc., 117, 593 (2014). http://dx.doi.org/10.1134/S0030400X14090215

12. A.S.Pushak, V.V.Vistovskyy, A.S.Voloshinovskii et al., Rad. Meas., 56, 402 (2013). http://dx.doi.org/10.1016/j.radmeas.2013.01.071

13. A.S.Pushak, V.V.Vistovskyy, A.Kotlov et al., Functional Materials, 20, 279 (2013). http://dx.doi.org/10.15407/fm20.03.279

14. A.S.Voloshinovskii, G.B.Stryganyuk, G.Zimmerer et al., Phys. Stat. Sol. A, 202, R101 (2005). http://dx.doi.org/10.1002/pssa.200521011

15. V.V.Vistovskyy, P.V.Savchyn, G.B.Stryganyuk et al., J. Phys.: Condens. Matter., 20, 325218 (2008). http://dx.doi.org/10.1088/0953-8984/20/32/325218

16. V.Vistovskyy, G.Stryganyuk, M.Pidzyrailo, A.Voloshinovskii, O.Antonyak, I.Pashuk, HASYLAB Annual Report (2007) 685.

17. G.Zimmerer, Radiat. Meas., 42, 859 (2007). http://dx.doi.org/10.1016/j.radmeas.2007.02.050

18. P.Dorenbos, E.V.D.van Loef, A.P.Vink et al., J. Luminescence, 117, 147 (2006). http://dx.doi.org/10.1016/j.jlumin.2005.04.016

19. R.T.Williams, K.S.Song, J. Phys. Chem. Solids, 51, 679 (1990). http://dx.doi.org/10.1016/0022-3697(90)90144-5

Current number: