Funct. Mater. 2016; 23 (1): 063-070.

http://dx.doi.org/10.15407/fm23.01.063

Excited state structural analysis (ESSA) for correlated states of spin-flip type: application to electronic excitations in nanodiamonds with defects

A.V.Luzanov, O.A.Zhikol

STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

The previously developed ESSA for configuration interaction singles (CIS) method is extended to a more rigorous many-body theory of excited states based on spin-flip (SF) transformations. The so-called SF-CIS (SF approach for CIS) is used, and the respective ESSA indices are constructed. These are atomic excitation indexes L*A, interatomic charge-transfer numbers lA - > B, and others. By using these quantities, low-lying excitations in the modelled nanodiamonds with color centers (first of all, nitrogen-vacancy (NV) centers) are investigated at a semiempirical level of the theory. It is shown that the lowest excitations are significantly localized in a vicinity of the vacancy. Furthermore, the same excitations are characterized by a high interatomic charge transfer. All these features are common to both types of the NV centers (neutral NV0 and negative NV-).

Keywords: 
nitrogen-vacancy center, triplet state, interstate excitation, excitation index, charge-transfer number.
References: 

1. G.D.Fuchs, V.V.Dobrovitski, R.Hanson et al., Phys. Rev. Lett., 101, 117601 (2008). http://dx.doi.org/10.1103/PhysRevLett.101.117601

2. P.Neumann, R.Kolesov, V.Jacques et al., New J. Phys., 11, 013017 (2009). http://dx.doi.org/10.1088/1367-2630/11/1/013017

3. V.V.Dobrovitski, G.D.Fuchs, A.L.Falk et al., Annu. Rev. Condens. Matter Phys., 4, 23 (2013). http://dx.doi.org/10.1146/annurev-conmatphys-030212-184238

4. A.Morero, Nat. Mater., 14, 135 (2015).

5. Fundamentals of Time-dependent Density-functional Theory, ed. by M.A.L.Marques, N.Maitra, F.Nogueir et al., Lecture Notes in Physics, Springer, Berlin (2012). http://dx.doi.org/10.1007/978-3-642-23518-4

6. P.Elliott, S.Goldson, C.Canahui, N.T.Maitra, Chem. Phys., 391, 110 (2011). http://dx.doi.org/10.1016/j.chemphys.2011.03.020

7. N.N.Bogolubov, Lectures on Quantum Statistics, Gordon & Breach, New York (1970).

8. D.J.Rowe, Rev. Mod. Phys., 40, 153 (1968). http://dx.doi.org/10.1103/RevModPhys.40.153

9. J.P.Blaisot, G.Ripka, Quantum Theory of Finite Systems, Massachusetts Institute of Technology, Massachusetts (1986).

10. S.Hirata, M.Head-Gordon, Chem. Phys. Lett., 314, 291 (1999) http://dx.doi.org/10.1016/S0009-2614(99)01149-5

11. A.I.Krylov, Chem. Phys. Lett., 338, 375 (2001). http://dx.doi.org/10.1016/S0009-2614(01)00287-1

12. Y.Shao, M.Head-Gordon, A.I.Krylov, J. Chem. Phys., 118, 4807 (2003). http://dx.doi.org/10.1063/1.1545679

13. Y.A.Bernard, Y.Shao, A.I.Krylov, J. Chem. Phys., 136, 204103 (2012). http://dx.doi.org/10.1063/1.4714499

14. X.Zhang, J.M.Herbert, J. Chem. Phys., 141, 064104 (2014). http://dx.doi.org/10.1063/1.4891984

15. A.V.Luzanov, A.A.Sukhorukov, V.E.Umanskii, Teor. Eksper. Khim., 10, 456 (1974).

16. A.V.Luzanov, V.F.Pedash, Theor. Exp. Chem., 15, 338 (1979). http://dx.doi.org/10.1007/BF00520694

17. A.V.Luzanov, Russ. Chem. Rev., 49, 1033 (1980). http://dx.doi.org/10.1070/RC1980v049n11ABEH002525

18. A.V.Luzanov, O.A.Zhikol, Int. J. Quantum Chem., 110, 902 (2010).

19. A.V.Luzanov, O.A.Zhikol, in: Practical Aspects of Computational Chemistry I: An Overview of the Last Two Decades and Current Trends, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2012), p.415.

20. F.Plasser, H.Lischka, J. Chem. Theory Comp., 8, 2777 (2012). http://dx.doi.org/10.1021/ct300307c

21. F.Plasser, S.A.Bappler, M.Wormit, A.Dreuw, J. Chem. Phys., 141, 024107 (2014); S.A.Bappler, F.Plasser, M.Wormit, A.Dreuw, Phys. Rev. A, 90, 052521 (2014); F.Plasser, B.Thomitzni, S.A.Bappler et al., J. Comput. Chem., 36, 1609 (2015). http://dx.doi.org/10.1002/jcc.23975

22. L.Blancafort, A.A.Voityuk, J. Chem. Phys., 140, 095102 (2014). http://dx.doi.org/10.1063/1.4867118

23. T.Etienne, X.Assfeld, A.Monari, J. Chem. Theory Comput., 10, 3896 (2014). http://dx.doi.org/10.1021/ct5003994

24. T.Etienne, J. Chem. Theory Comput., 11, 1692 (2014); http://dx.doi.org/10.1021/ct501163b

J. Chem. Phys., 142, 244103 (2015). http://dx.doi.org/10.1063/1.4922780

25. A.V.Luzanov, Functional Materials, 21, 125 (2014).

26. A.V.Luzanov, D.Casanova, X.Feng, A.I.Krylov, J. Chem. Phys., 142, 224104 (2015). http://dx.doi.org/10.1063/1.4921635

27. A.V.Luzanov, Theor. Exp. Chem., 17, 227 (1982); Ibid, 27, 356 (1991).

28. A.V.Luzanov, J. Struct. Chem., 44, 729 (2004). http://dx.doi.org/10.1007/s10947-005-0052-3

29. A.V.Luzanov, Functional Materials, 22, 514 (2015). http://dx.doi.org/10.15407/fm22.04.514

30. Physics and Applications of CVD Diamond, ed. by C.Nebel, M.Nesladek, Wiley, Weinheim (2008).

31. Optical Engineering of Diamond, ed. by C.R.P.Mildren, J.R.Rabeau, Wiley, Berlin (2013). http://dx.doi.org/10.1002/9783527648603

32. M.W.Doherty. N.B.Manson, P.Delaney et al., Phys. Reports, 528, 1 (2013). http://dx.doi.org/10.1016/j.physrep.2013.02.001

33. R.Schirhagl, K.Chang, M.Loretz, C.L.Degen, Annu. Rev. Phys. Chem., 65, 83 (2014). http://dx.doi.org/10.1146/annurev-physchem-040513-103659

34. Quantum Information Processing with Diamond, ed. by S.Prawer, I.Aharonovich, Elsevier, Cambridge, UK (2014).

35. J.Wrachtrup, S.Y.Kilin, A.P.Nizovtsev, Opt. Spectrosc., 91, 429 (2001). http://dx.doi.org/10.1134/1.1405224

36. J.J.L.Morton, J. Elzerman, Nature Nanotechnology, 9, 167 (2014). http://dx.doi.org/10.1038/nnano.2014.37

37. H.Bernien, B.Hensen, W.Pfaff, Nature, 497, 86 (2013). http://dx.doi.org/10.1038/nature12016

38. V.V.Yanovski, Quantum Mechanics of Algorithms, ISMA, Kharkiv (2009) [in Russian].

39. R.J.Bell, P.Dean, D.C.Hibbins-Butler, J. Phys. C, 3, 2111 (1970). http://dx.doi.org/10.1088/0022-3719/3/10/013

40. N.C.Murphy, R.Wortis, W.A.Atkinson, Phys. Rev. B, 83, 184206 (2011). http://dx.doi.org/10.1103/PhysRevB.83.184206

41. Wolfram Research, Inc., Mathematica, Version 5.2, Champaign, IL (2005).

42. J.P.Goss, P.R.Briddon, M.J.Rayson et al., Phys. Rev. B, 72, 035214 (2005). http://dx.doi.org/10.1103/PhysRevB.72.035214

43. Y.G.Zhang, Z.Tang, X.G.Zhao et al., Appl. Phys. Lett., 105, 052107 (2014). http://dx.doi.org/10.1063/1.4892654

44. A.L.Pushkarchuk, S.A.Kuten, V.A.Pushkarchuk et al., in: Proc. XIV Int. Conf. on Quantum Optics and Quantum Information, Minsk, Belarus, 48 (2015).

Current number: