Funct. Mater. 2016; 23 (1): 098-103.

http://dx.doi.org/10.15407/fm23.01.098

Characteristics of cadmium ion sorption from aqueous solutions on copper(II) sulfide at different temperatures and pH

A.V.Bulgakova1, D.S.Sofronov1, E.Yu.Bryleva1, V.A.Chebanov1,2

1SSI "Institute for Single Crystals", STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

Characteristics of cadmium ion sorption from aqueous solutions on copper(II) sulfide at different temperatures and pH were investigated. The sorption process obeys to the Langmuir equation, which is used to calculate the sorption capacities of copper(II) sulfide. It is shown that the sorption capacity increases with increase of pH and decrease of temperature. The sorption capacity changes from 5.6 mg/g at pH 5 and 308 K to 15.2 mg/g at pH 7 and 288 K. Optimization of the conditions permits to improve the copper(II) sulfide sorption capacity. The pH changes during the sorption obey to the Kurbatov equation with the sorption process being the ion exchange reaction.

Keywords: 
cadmium ion, sorption, sorption capacity.
References: 

1. S.Mustafa, M.Waseem, A.Naeem et al., Desalination, 255, 148 (2010). http://dx.doi.org/10.1016/j.desal.2009.12.031

2. S.Mustafa, S.Misbahud, D.Sammad et al., Chin. J. Chem., 28, 1153 (2010). http://dx.doi.org/10.1002/cjoc.201090200

3. M.Erdem, A.Ozverdi, Separat. and Purif. Techn., 51, 240 (2006). http://dx.doi.org/10.1016/j.seppur.2006.02.004

4. X.Huang, N.Gao, Q.Zhang, J. Environ. Sci., 19, 1287 (2007). http://dx.doi.org/10.1016/S1001-0742(07)60210-1

5. Y.Kang, M.Poon, P.Monash et al., Korean J. Chem. Eng., 30, 1904 (2010). http://dx.doi.org/10.1007/s11814-013-0130-8

6. L.Luo, C.Ma, Y.Ma, Environ Pollut., 159(5), 1108 (2011). http://dx.doi.org/10.1016/j.envpol.2011.02.019

7. K.V.Ragnarsdottir, C.R.Collins, D.M.Sherman, Mineral. Mag., 62A, 650 (1998). http://dx.doi.org/10.1180/minmag.1998.62A.2.306

8. D.A.Dzombak, M.M.Francois, J. Colloid and Interf. Sci., 112, (1986).

9. N.Salami, F.A.Adekola, Bull. Chem. Soc. Ethiop., 16(1), 7 (2002)

10. F.Wang, L.J.Wang, J.S.Li, Trans. Nonfer. Met. Soc., 19, 740 (2009). http://dx.doi.org/10.1016/S1003-6326(08)60343-X

11. H.Benaissa, M-A.Elouchdi, in: Proc. of Twelfth Intern. Water Technology. Conf., Alexandria, Egypt 1 (2008), p.122.

12. H.K.Boparai, M.Joseph, D.M.O'Carroll, J. Hazard. Mater., 27, 8 (2010).

13. T.Mathialagan, T.Viraraghavan, J. Hazard. Mater. B, 94, 291 (2002). http://dx.doi.org/10.1016/S0304-3894(02)00084-5

14. V.O.Vasylechko, G.V.Gryshchouk, Yu.B.Kuz'ma et al., Micropor. Mesopor. Mater., 60, 183 (2003). http://dx.doi.org/10.1016/S1387-1811(03)00376-7

15. S.K.Srivastava, G.Bhattacharjee, R.Tyagi et al., Environ. Technol. Lett., 9, 1173 (1988). http://dx.doi.org/10.1080/09593338809384679

16. S.K.Srivastava, R.Tyagi, N.Pal, Environ. Technol. Lett., 10, 275 (1989). http://dx.doi.org/10.1080/09593338909384742

17. Y.Loo, A.Yoong, P.Lay et al., Advan. Mat. Res., 356-360, 537 (2012).

18. T.Jong, D.L.Parry, J. Colloid Interf. Sci., 61, 275 (2004).

19. J.M.Moore, S.Ramamoorthy, Heavy Metals in Natural Waters, Springrer-Verlag Corporation, New York (1984). http://dx.doi.org/10.1007/978-1-4612-5210-8

20. G.A.Parks, P.L.de Bruyn, J. Phys. Chem., 66, 967 (1962). http://dx.doi.org/10.1021/j100812a002

21. W.E.Halter, Geochim. et Cosmochim. Acta, 63, 3077 (1999). http://dx.doi.org/10.1016/S0016-7037(99)00235-5

22. P.H.Tewari, A.W.McLean, J. Colloid Interf. Sci., 40, 267 (1972). http://dx.doi.org/10.1016/0021-9797(72)90016-1

23. S.Mustafa, B.Dilara, Z.Neelofer et al., J. Colloid and Interf. Sci., 204, 284 (1998). http://dx.doi.org/10.1006/jcis.1998.5572

24. V.A.Nazarenko, V.P.Antonovich, E.M.Nevskaya, Metal Ions Hydrolysis in Dilute Solutions, Atomizdat, Moscow (1979) [in Russian].

25. M.H.Kurbatove, G.B.Wood, J.D.Kurbatove, J. Phys. Chem., 55, 1170 (1951). http://dx.doi.org/10.1021/j150490a007

26. V.C.Srivastava, I.D.Mall, I.M.Mishra, Chem. Eng. J., 132, 267 (2007). http://dx.doi.org/10.1016/j.cej.2007.01.007

Current number: