Funct. Mater. 2016; 23 (1): 111-119.

http://dx.doi.org/10.15407/fm23.01.111

Merrifield resin modified with thiacalixarene-tetraphosphonates: synthesis, characterization and europium sorption

M.S.Lukashova1, K.N.Belikov1,2, K.Yu.Bryleva1, S.G.Kharchenko3, S.G.Vishnevsky3, V.I.Kalchenko3

1State Scientific Institution "Institute of Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
3Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Str., 02660 Kyiv, Ukraine

Abstract: 

Tetrahydroxythiacalixarene tetraphosponates were synthesized and chemically linked to chloromethylated polystyrene (Merrifield resin) surface via the Williamson reaction. In order to evaluate the effect of thiacalixarene platform structure on the properties of sorbents, phosphorylated resins with P=O groups attached to the polymer surface via methylene spacers were synthesized by the Arbuzov reaction of the iodomethylpolysterene with trialkylphosphites. Composition and structure of the obtained materials was established by elemental analysis and IR spectroscopy. The sorbents obtained remove up to 99 % of Eu(III) ions from aqueous solutions of average mineralization level at pH of 5.5-6. The optimum contact time was established to be 2 h. Due to cooperative (macrocyclic) effect of P=O binding groups pre-organized at the upper rim of the thiacalixarene platform the resins exhibit better uptake parameters than the resins modified with para-unsubstituded, para-tert-butylsubstituted thiacalixarenes or the resins bearing the phosphonate groups directly bound to the Merrifield resin surface. Europium distribution coefficient for the best sorbents obtained was equal to 11.3.

Keywords: 
supramolecular chemistry, thiacalixarenes, phosphonates, Merrifield resin, lanthanides, sorption, radioactive wastes.
References: 

1. C.Davies (ed.), Eur. Com., B5, 599, Luxembourg (2000).

2. M.Hugon (ed.), Euroatom, Brussels (2000).

3. G.R.Choppin, M.Kh.Khankhasayev (eds.), Academic Publishers, Dodrecht (1999).

4. A.A.Kluchnikov, V.A.Krasnov, V.M.Rud'ko, V.N.Shcherbin, Institute for Safety Problems of NPP NAS of Ukraine, 168, 1986 (2006).

5 V.V.Babain, A.Yu.Shadrin, Kluwer Academic Publishers, Dodrecht (1999).

6. G.J.Lumetta, R.D.Rogers, A.S.Gopalan, American Chemical Society, Washington (2000).

7. L.Atamas, O.Klimchuk, V.Rudzevich et al., J. Supramol. Chem., 2, 421 (2002). http://dx.doi.org/10.1016/S1472-7862(03)00052-2

8. S.Kharchenko, S.Shishkina, O.Shishkin et al., Supramol. Chem., 26, 864 (2014). http://dx.doi.org/10.1080/10610278.2014.890198

9. F.Arnaud-Neu, J.K.Browne, D.Byrne, Chem. Eur. J., 5, 175 (1999). http://dx.doi.org/10.1002/(SICI)1521-3765(19990104)5:1<175::AID-CHEM175>3.0.CO;2-P

10. O.Klimchik, L.Atamas, S.Miroshnichenko et al., Incl. Phenom., 49, 47 (2004). http://dx.doi.org/10.1023/B:JIPH.0000031112.16272.17

11. L.Cecille, M.Casera, L.Pietrelli, Elsevier, London (1991).

12. M.J.Schwing-Weill, F.Arnaud-Neu, Gazetta Chim. Italiana, 127, 687 (1997).

13. V.Yu.Korovin, Yu.F.Korovin, Yu.M.Shestak, Yu.M.Pogorelov, Quest. Chem. and Chem. Techn., 2, 156 (2008).

14. M.Yilmaz, S.Memon, M.Tabakci, R.A.Bartsch, Hauppauge NY, 125 (2006).

15. N.Morohashi, F.Narumi, N.Iki et al., Chem. Rev., 106, 5291 (2006). http://dx.doi.org/10.1021/cr050565j

16. O.Kasyan, D.Swierczynski, A.Drapailo et al.,Tetrahedron Lett., 44, 7167 (2003). http://dx.doi.org/10.1016/S0040-4039(03)01809-4

17. R.Mildbradt, V.Bohmer, Kluwer Academic Publishers, Dordrecht (2001).

18. W.Hu, J.S.Li, Y.Q.Feng et al., Chromatographia, 48, 245 (1998). http://dx.doi.org/10.1007/BF02467678

19. C.Schneider, U.Menyes, T.Jira, J. Sep. Sci., 33, 2930 (2010). http://dx.doi.org/10.1002/jssc.201000281

20. O.I.Kalchenko, V.I.Kalchenko, Physics and Techn. Surf., 3, 3 (2012).

21. S.Memon, E.Akceylan, B.Sap et al., J. Polym. Environ., 11, 67 (2003). http://dx.doi.org/10.1023/A:1024223922541

Current number: