Functional Materials, 23, No.2 (2016), p.165-169.

http://dx.doi.org/10.15407/fm23.02.165

Shift of superconducting transition temperatures in  magnetic superconductor  RuSr2(Eu1.5Ce0.5)Cu2O10-δ under influence of annealing in high pressure oxygen atmosphere

E.Yu.Beliayev

B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave., 61103 Kharkiv, Ukraine

Abstract: 

Effect of annealing in high pressure oxygen atmosphere on superconducting transition temperatures for ceramic samples of magnetic superconductor RuSr2(Eu1.5Ce0.5)Cu2O10-δ was studied. It was shown that properties of the samples are consistent with behavior of the granular superconducting system. As a result of oxygen saturation the superconducting transition temperatures become higher. Particularly, shift of the superconducting transition temperature for intergranular medium is Δci = 9.2 K and for the matter within the granules ΔTcg = 6.8 K. This difference is due to the mechanism of oxygen diffusion along the grain boundaries. In the temperature range of 135 < T < 350 K the resistance behavior obeys the Mott's law of variable range hopping for three-dimensional case.

Keywords: 
superconductor RuSr<sub>2</sub>(Eu<sub>1.5</sub>Ce<sub>0.5</sub>)Cu<sub>2</sub>O<sub>10-&delta;</sub>, superconducting transition,oxygen saturation.
References: 

1. P.W.Klamut, Supercond. Sci. and Techn., 21, 093001 (2008). http://dx.doi.org/10.1088/0953-2048/21/9/093001

2. T.Nachtrab, Ch.Bernhard, Ch.Lin et al., Compt. Rend. Phys., 7, 68 (2006). http://dx.doi.org/10.1016/j.crhy.2005.11.010

3. I.Felner, U.Asaf, Y.Levi, O.Millio, Phys. Rev. B, 5, R3374 (1997). http://dx.doi.org/10.1103/PhysRevB.55.R3374

4. I.Felner, U.Asaf, Y.Levi, O.Millioi, Int. J. Mod. Phys. B, 13, 3650 (1999). http://dx.doi.org/10.1142/S021797929900360X

5. B.D.Hennings, K.D.D.Rathnayaka, D.G.Naugle, I.Felner, Physica C, 370, 253 (2002). http://dx.doi.org/10.1016/S0921-4534(01)00955-8

6. B.I.Belevtsev, E.Yu.Beliayev, D.G.Naugle et al., J. Phys.:Condens. Matter, 19, 036222 (2007). http://dx.doi.org/10.1088/0953-8984/19/3/036222

7. V.V.Petrykin, M.Osada, M.Kakihana et al., Chem. Mater., 15, 4417 (2003). http://dx.doi.org/10.1021/cm030052y

8. G.Paasch, T.Lindner, S.Scheinert, Synthetic Met., 132, 97 (2002). http://dx.doi.org/10.1016/S0379-6779(02)00236-9

9. P.W.Klamut, PMC Physics B, 3, 2 (2010). http://dx.doi.org/10.1186/1754-0429-3-2

Current number: