Functional Materials, 23, No.2 (2016), p.191-196.

http://dx.doi.org/10.15407/fm23.02.191

Defects related luminescence in yttrium-aluminum garnet crystals

N.Shiran, A.Gektin, K.Hubenko, V.Nesterkina, P.Arhipov, S.Tkachenko, O.Sidletskiy

Institute for Scintillation Materials, STC  Institute for Single Crystals  National Academy of Sciences of Ukraine, 60 Lenina Ave., 61001 Kharkov, Ukraine

Abstract: 

Correlation between growth conditions, point defects appearance, their absorption and spectral-kinetic luminescence characteristics in yttrium-aluminum garnet-based crystals is analyzed. The physical processes are strongly related to the intrinsic lattice defects and composition deviation from the stoichiometry. It is shown that presence of antisite and vacancy-type defects or foreign atoms incorporation results in additional channels of excitation energy dissipation in pure and doped yttrium-aluminum garnet crystals.

Keywords: 
yttrium-aluminum garnet, stoichiometry, defect emission, antisites, cation and oxygen vacancies, color centers.
References: 

1. S.Geller, Crystal Chemistry of the Garnets, Zeitschr. Kristallographie, Bd. 125 (1967).

2. M.Kh.Ashurov, K.Voronko, V.V.Osiko et al., Phys. Stat. Sol. (a), 2, 101 (1977). http://dx.doi.org/10.1002/pssa.2210420108

3. C.R.Varney, M.A.Khamehchi, J.Ji, F.A.Selim, J. Appl. Phys., 116, 083505 (2014). http://dx.doi.org/10.1063/1.4893675

4. Ch.Milanese, V.Buscaglia, F.Maglia et al., Chem. Mater., 16, 1232 (2004). http://dx.doi.org/10.1021/cm031138u

5. M.M.Kuklja, R.Pandey, J. Am. Ceram. Soc., 82, 2881 (1999). http://dx.doi.org/10.1111/j.1151-2916.1999.tb02172.x

6. M.M.Kuklja, J. Phys. Cond. Matter., 12, 2953 (2000). http://dx.doi.org/10.1088/0953-8984/12/13/307

7. Y.Fujimoto, T.Yanagida, H.Yagi et al., Opt. Mater., 36, 1926 (2014). http://dx.doi.org/10.1016/j.optmat.2014.06.019

8. Yu.Zorenko, E.Zych, A.Voloshinovskii, Opt. Mater., 31, 1845 (2009). http://dx.doi.org/10.1016/j.optmat.2008.11.026

9. Yu.Zorenko, T.Voznyak, V.V.Gorbenko et al., Opt. Mater., 35, 2049 (2013). http://dx.doi.org/10.1016/j.optmat.2012.07.009

10. Y.Dong, G.Zhou, J.Xu, G.Zhao et al., J. Cryst. Growth, 286, 476 (2006). http://dx.doi.org/10.1016/j.jcrysgro.2005.09.029

11. C.R.Varney, F.A.Selim, Color centers in YAG, AIMS Mat. Sci., 2, 560 (2015). http://dx.doi.org/10.3934/matersci.2015.4.560

12. V.I.Chani, A.Yoshikawa, Y.Kuwano et al., J. Cryst. Growth, 204, 155 (1999). http://dx.doi.org/10.1016/S0022-0248(99)00170-0

13. Yu.Zorenko, A.Voloshinovskii, V.Savchyn et al., Phys. Stat. Sol. (b), 244, 2180 (2007). http://dx.doi.org/10.1002/pssb.200642431

14. Shaped Crystals: Micro-pulling-down Technique and Growth, ed. by T.Fukuda, V.I.Chani, Springer, Berlin-New York (2007).

15. Handbook of Crystal Growth, 2nd Edition, ed. by P.Rudolph, Elsevier (2014).

16. P.Arhipov, S.Tkachenko, S.Vasyukov et al., Functional Materials., 21, 472 (2014). http://dx.doi.org/10.15407/fm21.04.472

17. M.V.Korzhik, M.G.Livshits, N.I.Zotov et al., Zh. Prikl. Spektr., 48, 637 (1988).

18. C.R.Varney, S.M.Reda, D.T.Mackay et al., AIP Advances, 1, 042170 (2011). http://dx.doi.org/10.1063/1.3671646

19. M.S.Kulkarni, K.P.Muthe, N.S.Rawat et al., Rad. Meas., 43, 492 (2008). http://dx.doi.org/10.1016/j.radmeas.2007.10.039

20. X-B.Yang, H.-J.Li, Q-Yu.Bi et al., J. Appl. Phys., 104, 123112 (2008). http://dx.doi.org/10.1063/1.3050344

21. X-B.Yang, J.Xu, H.-J.Li et al., J. Appl. Phys., 106, 033105 (2009). http://dx.doi.org/10.1063/1.3194794

22. Yu.Zorenko, A.Voloshinovskii, I.Konstankevych et al., Radiat. Meas., 38, 677 (2004). http://dx.doi.org/10.1016/j.radmeas.2004.02.009

23. Yu.Zorenko, V.Gorbenko, I.Konstankevych et al., J. Luminescence, 114, 85 (2005). http://dx.doi.org/10.1016/j.jlumin.2004.12.002

24. D.T.Haven, D.Solodovnikov, M.H.Weber et al., Appl. Phys. Lett., 101, 041101 (2012). http://dx.doi.org/10.1063/1.4738788

25. C.R.Varney, M.A.Khamehchi, Ji.Ji, F.A.Selim, Rev. Sci. Instr., 83, 103112 (2012). http://dx.doi.org/10.1063/1.4764772

26. M.Seki, V.V.Kochurikhin, S.Kurosawa et al., Phys. Stat. Sol. C, 9, 2255 (2012). http://dx.doi.org/10.1002/pssc.201200325

27. M.Springis, A.Pujats, J.Valbis, J. Phys. Cond. Matter., 3, 5457 (1991). http://dx.doi.org/10.1088/0953-8984/3/28/021

28. V.Babin, K.Blazek, A.Krasnikov, Phys. Stat. Sol. C, 2, 97 (2005). http://dx.doi.org/10.1002/pssc.200460120

29. D.T.Mackay, C.R.Varney, J.Buscher et al., J. Appl. Phys., 112, 023522 (2012). http://dx.doi.org/10.1063/1.4739722

30. E.Aleksanyan, M.Kirm, S.Vielhauer et al., Radiat. Meas., 56, 54 (2013). http://dx.doi.org/10.1016/j.radmeas.2013.01.036

31. A.Pujats, M.Springis, Rad. Eff. Def. Solids, 155, 65 (2001). http://dx.doi.org/10.1080/10420150108214094

32. M.Kh.Ashurov, A.F.Rakov, R.A.Erzin, Sol. Stat. Comm. 120, 491 (2001). http://dx.doi.org/10.1016/S0038-1098(01)00434-3

33. V.Graveris, I.Kruminsh, Thermoact. Spectrosc. Defects in Ionic Crystals, Proceed., Latv., ed. by V.Zirap (1983), p.145

34. T.Masumoto, Y.Kuwano, Jpn. J. Appl. Phys., 24, 546 (1985). http://dx.doi.org/10.1143/JJAP.24.546

35. K.Chakrabarti, J. Phys. Chem. Sol., 49, 1009 (1988). http://dx.doi.org/10.1016/0022-3697(88)90146-1

36. K.Mori, Phys. Stat. Sol. (a), 42, 375 (1977). http://dx.doi.org/10.1002/pssa.2210420142

37. A.B.Munoz-Garcia, Z.Barandiaran, L.Seijo, J. Mater. Chem., 22, 19888 (2012). http://dx.doi.org/10.1039/c2jm34479c

38 A.P.Patel, M.R.Levy, R.W.Grimes et al., Appl. Phys. Lett., 93, 191902 (2008). http://dx.doi.org/10.1063/1.3002303

39. B.Liu, M.Gu, X.L.Liu, S.M.Huang et al., Appl. Phys. Lett., 94, 121910 (2009). http://dx.doi.org/10.1063/1.3109799

40. M.J.Weber, The Role of Lanthanides in Optical Materials, in: Ceramic Transactions; ed. by B.G.Potter, A.J.Bruce, The American Ceramic Society, Westerville, OH, v.67 (1996), p.3.

41. D.Stanek, Nucl. Instr. Phys. Res. B, 266, 2657 (2008). http://dx.doi.org/10.1016/j.nimb.2008.03.209

42. F.A.Selim, D.Winarski, C.R.Varney et al., Res. Phys., 5, 28 (2015).

Current number: