Functional Materials, 23, No.2 (2016), p.202-205.

http://dx.doi.org/10.15407/fm23.02.202

Structural rearrangement and change of cerium valence in cerium dioxide (CeO2) nanocrystals

Yu.I.Boyko1, V.V.Seminko2, P.O.Maksimchuk2, Yu.V.Malyukin2

1V.Karazin Kharkiv National University, 4 Svobody Sq., 61077 Kharkiv, Ukraine
2Institute for Scintillation Materials, STC  Institute for Single Crystals , National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

For CeO2 nanocrystals a large number of cerium ions undergo Ce4+→ Ce3+ transition leading to formation of oxygen-deficient CeO2-x phase in the subsurface layer of nanocrystal. Such structural rearrangement leads to density gradient in ceria nanocrystals changing thereby the elastic constants of material. The analysis of free energy balance has shown that formation of highly deficient CeO2-x phase occurs inevitably for the nanocrystals with sizes d≤6 nm.

Keywords: 
nanocrystals, CeO<sub>2</sub>, density gradient.
References: 

1. S.A.Nepiyko, Physical Properties of Small Metal Particles, Naukova Dumka, Kiev (1985). [in Russian].

2. Yu. Petrov, Physics of Small Particles, Nauka, Moscow (1982). [in Russian].

3. I. D. Morokhov, L.I. Trusov, V.N. Lapovok, Physical Phenomena in Ultra-dispersed Media, Energoatomisdat, Moscow (1984) . [in Russian].

4. A.I. Gusev, Uspehi Fiz. Nauk, 168, 55 (1998). http://dx.doi.org/10.3367/UFNr.0168.199801c.0055

5. Z.Zhan, S.A.Barnett, Science, 308, 844 (2005). http://dx.doi.org/10.1126/science.1109213

6. D.R.Ou, T.Mori, H.Togasaki et al., Langmuir, 27, 3859 (2011). http://dx.doi.org/10.1021/la1032898

7. Z.C.Kang, Z.L.Wang, Adv. Mater., 15, 521 (2003). http://dx.doi.org/10.1002/adma.200390121

8. H.Imagawa, A.Suda, K.Yamamura, S.Sun, J. Phys. Chem. C, 115, 1740 (2011). http://dx.doi.org/10.1021/jp109878j

9. F.Esch, S.Fabris, L.Zhou et al., Science, 309, 752 (2005). http://dx.doi.org/10.1126/science.1111568

10. P. Maksimchuk, A. Masalov, V. Seminko et al., Nanostrukturnoye materialovedeniye, ь 3 - 4 (2013).

11. P.Maksimchuk, V.Seminko, I.Bespalova, A.Masalov, Functional Materials, 21, 254 (2014).

12. P.Maksimchuk, V.Seminko, I.Bespalova, A.Masalov, Functional Materials, 21, 152 (2014). http://dx.doi.org/10.15407/fm21.02.152

13. R. C. Evans, An Introduction to Crystal Chemistry, Cambridge University Press, Cambridge (1964).

14. N.Skorodumova, N.Simak, B.Lundqvist et al., Phys. Rev.Let., 89, 1666 (2002). http://dx.doi.org/10.1103/PhysRevLett.89.166601

15. V.M. Apalkov, Yu.I. Boyko, V.V. Slezov Vestnik KhNU , Physics , ь 4, 59 (2000).

16. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, McGraw-Hill, New York (1987).

17. M.P. Slavinskiy, Physico - chemical Properties of Elements, Metallurgy, Moscow (1952).

Current number: