Functional Materials, 23, No.2 (2016), p.236-242.

http://dx.doi.org/10.15407/fm23.02.236

The effect of microstructure and the related bio-corrosion behavior Mg alloy in SBF artificial body fluid

Hou Jianbao1,2, Yao Qi3, Xiao Yanni3, Wang Kelu1,2, Liu Junwei1,2

1 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
2 Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province, Nanchang Hangkong University, 330063
3 Beijing Spacecraft Manufacturing Factory, Beijing, 100190

Abstract: 

The effect of SBF artificial body fluid on microstructure and morphology characteristics of AZ91D alloy was investigated using OM, SEM and XRD. The effect of corrosion on mechanical properties also was researched. The results show that the corrosion weight loss rate initially increased, then clearly decreased, and finally remained steady. Pits began to appear when the sample was placed in a corrosive environment for five days and pitting gradually increased with longer exposure time. The pits, which made the grain boundaries indistinct, first appeared near the grain boundary area and then gradually increased in area. The main mode of corrosion is pitting and the primary corrosion product, MgOH2, could be observed after five days of corrosion.

Keywords: 
Mg alloy, artificial body fluid; corrosion; microstructure
References: 

1. T. Zhou, D. Chen, Z-H. Chen, Transactions of Nonferrous Metals Society of China, 18, 101, 2008. http://dx.doi.org/10.1016/S1003-6326(10)60183-5

2. J-W. Liu, D. Chen, Transactions of Nonferrous Metals Society of China, (S1), 2008.

3. Z-H. Yu, H-G. Yan, X-Y. Yin, Transactions of Nonferrous Metals Society of China, 22, 2012.

4. J. Zhang, D-W. Zhou, Transactions of Nonferrous Metals Society of China, 19,205, 2009. http://dx.doi.org/10.1016/S1003-6326(08)60253-8

5. D-W. Zhou, J-S. Liu, J. Zhang, Transactions of Nonferrous Metals Society of China, 2,250, 2007. http://dx.doi.org/10.1016/S1003-6326(07)60080-6

6. S. I. Rokhlin, J.-Y. Kim, H. Nagy, B. Zoofan, Eng. Fracture Mech., 62, 425,1999. http://dx.doi.org/10.1016/S0013-7944(98)00101-5

7. A. Eliezer, E. M. Gutman, E. Abramov, Y. Unigovski, J.Light Metal., 1, 179, 2001. http://dx.doi.org/10.1016/S1471-5317(01)00011-6

8. Y. Unigovski, A. Eliezer, E. Abramov, Y. Snir, E. M. Gutman, Mater.Eng. A, 360,132, 2003. http://dx.doi.org/10.1016/S0921-5093(03)00409-X

9. M. S Bhuiyan, Y. Mutoh, T. Murai, Intern. J. Fatigue, 30, 1765, 2008. http://dx.doi.org/10.1016/j.ijfatigue.2008.02.012

10. F. Witte, V. Kaese, H. Haferkamp, Biomaterials, 26, 3557, 2005. http://dx.doi.org/10.1016/j.biomaterials.2004.09.049

11. M. B. Kannan, R. K. S Raman, Biomaterials, 29, 2306, 2008. http://dx.doi.org/10.1016/j.biomaterials.2008.02.003

12. C-L. Liu, Y-C. Xin, G-Y. Tang, P-K. Chu, Mater. Scie. Engin. A , 456, 350, 2007. http://dx.doi.org/10.1016/j.msea.2006.12.020

13. M. B. Kannan, R. K. S. Raman, Scripta Mater, 59, 175, 2008. http://dx.doi.org/10.1016/j.scriptamat.2008.03.001

14. M. P. Staigera, A. M. Pietaka, Biomaterials, 27, 2006.

15. P. Muthukumar, Maiya, M. Prakash, S. Srinirasa Murthy, R. Vijay, R. Sundaresan, J. Alloys Comp., 452, 456, 2008. http://dx.doi.org/10.1016/j.jallcom.2007.03.112

Current number: