Functional Materials, 23, No.2 (2016), p.243-248.

http://dx.doi.org/10.15407/fm23.02.243

Process and property of hot-rolled stainless steel/carbon steel cladding bar

Zhining Jia, Yanan Gao

Chengde Petroleum College, Chengde 067000, Hebei, China

Abstract: 

To study the process and property of hot-rolled stainless steel/carbon steel cladding bar, a rational pass system is designed for rolling and the bonding strength between the stainless steel cladding and carbon steel core was investigated by using shearing test and bending test. Then, the bonding interface, element diffusion and shearing fracture surface were analyzed by applying optical microscope, EDS and SEM. The results show that the thickness distribution of stainless steel shell is homogeneous; the metallurgical bonding between the two metals is formed after the third pass rolling and the shearing strength of the interface is more than 307 MPa. At the same time, the bending property of the bar displays well. The interface region is clearly divided into stainless steel zone, transition zone and carbon steel zone. Element diffusion occurs at the interface that the Fe of carbon steel diffuses into stainless steel and the Cr, Ni, Mn of stainless steel diffuse into carbon steel. It makes the formation of the transition zone with 20 μm in width in carbon steel and the total width of diffusion zone is 30 μm. Shearing strength of the interface after the sixth pass rolling is higher than the carbon steel substrate and the shearing fracture occurs in the carbon steel.

Keywords: 
cladding bar; stainless steel; rolling; pass design; element diffusion
References: 

1. M.Mancio, J. Y. Zhang, P. J. M. Monteiro, Aci Mater. J., 21(2), 18, 2004.

2. S. Barella, C. Mapelli, R. Venturini, Metallurg Scie. Tecnol, 23(1),19, 2005,

3. M. Moreno, W. Morris, M. G. Alvarez, et al., Corrosion Science, 46(11): 2681, 2004. http://dx.doi.org/10.1016/j.corsci.2004.03.013

4. S. R. Moraes, D. Huerta-Vilca, A. J. Motheo,Progr. Org.Coat., 48(1), 28, 2003. http://dx.doi.org/10.1016/S0300-9440(03)00075-4

5. M. Nasresfahani, M. Pourriahi, A. Motalebi, et al., Anti-Corros. Meth.Mater., 61(1),1, 2014 http://dx.doi.org/10.1108/ACMM-12-2012-1229

6. Patent United States, US8978430 B2, 2015.

7. C. P. Paul, H. Alemohammad, E. Toyserkani, et al., Mater.Scie. Eng., A 464(1-2), 170, 2007, http://dx.doi.org/10.1016/j.msea.2007.01.132

8. A. R. Eivani, A. K.Taheri, Mater. Lett., 61(19-20), 4110, 2007, http://dx.doi.org/10.1016/j.matlet.2007.01.046

9. A. Khosravifard, R. Ebrahimi, Mater. Design, 31(1), 493, 2010. http://dx.doi.org/10.1016/j.matdes.2009.06.026

10. Dyja H, Mroz S, Milenin A, Lesik L., The 44th Mech.Working Steel Proc. Conf. 8th Steel Rolling Intern. Conf., Orlando, 2002, 653.

11. P. Szota, H. Dyja, J.Achiev. Mater. Manuf. Engin., 25(1), 55, 2007.

12. G. Markeset, S. Rostam, O. Klinghoffer. Guide for the use of stainless steel reinforcement in concrete structures. Oslo: Norwegian Building Research Institute. Project Report, 2006.

13. M. C. William, E. D. F. Duke, J. J. Kellar, et al. Stainless steel clad rebar in bridge decks. Rapid City: South Dakota Department of Transportation Office of Research, Final Report, 2001.

Current number: