Functional Materials, 23, No.2 (2016), p.268-273.

http://dx.doi.org/10.15407/fm23.02.268

A semiempirical description of functionalized nanodiamonds with NV- color centers

A.V.Luzanov1, O.A.Zhikol1, I.V.Omelchenko1, A.P.Nizovtsev2, S.Ya.Kilin2, A.L.Puchkarchuk3, V.A.Puchkarchuk4

1 SSI  Institute of Single Crystals , National Academy of Sciences of Ukraine, 60 Nauky Ave., 61078 Kharkiv, Ukraine
2B.Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68 Prosp. Nezavisimosti, 220072 Minsk, Belarus
3Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganova Str., 220072 Minsk, Belarus
4Belarusian State University of Informatics and Radioelectronics, 6 P.Brovki Str., 220013 Minsk, Belarus

Abstract: 

Possibilities of semiempirical AM1 method in descripting the nanodiamond spectral properties are investigated with the stress on the relevant functionalized systems containing nitrogen-vacancy color centers. We studied two types of functionalization - hydroxylation and fluorination of the nanodiamond surface. It is shown that only slight spectral shifts occur (batochromic shifts in case of the hydroxylation, and hypsochromic ones in case of the fluorination). The semiempirical approach demonstrates the ability to easily and simply handle nanoclusters with hundreds carbon atoms.

Keywords: 
nitrogen-vacancy center, AM1 method, spectral shifts, HOMO-LUMO gap.
References: 

1. CVD Diamond for Electronic Devices and Sensors, ed. by R.S.Sussmann, Wiley, Berlin (2009). http://dx.doi.org/10.1002/9780470740392

2. Optical Engineering of Diamond, ed. by C.R.P.Mildren, J.R.Rabeau. Wiley, Berlin (2013). http://dx.doi.org/10.1002/9783527648603

3. Quantum Information Processing with Diamond, ed. by S.Prawer, I.Aharonovich, Elsevier, Cambridge (2014).

4. R.Schirhagl, K.Chang, M.Loretz et al., Annu. Rev. Phys. Chem., 65, 83 (2014). http://dx.doi.org/10.1146/annurev-physchem-040513-103659

5. Y.Xing, L.Dai, Nanomedicine, 4, 207 (2009). http://dx.doi.org/10.2217/17435889.4.2.207

6. I.P.Chang, K.C.Hwang, J.-a.A.Ho et al., Langmuir, 26, 3685 (2010). http://dx.doi.org/10.1021/la903162v

7. K.-M.C.Fu, C.Santori, P.E.Barclay et al., Appl. Phys. Lett., 96, 121907 (2010). http://dx.doi.org/10.1063/1.3364135

8. M.V.Hauf, B.Grotz, B.Naydenov, Phys. Rev. B, 83, 081304 (2011). http://dx.doi.org/10.1103/PhysRevB.83.081304

9. I.Kratochvilova, A.Kovalenko, A.Taylor et al., Phys. Stat. Sol. (a), 207, 2045 (2010). http://dx.doi.org/10.1002/pssa.201000012

10. H.Pinto, R.Jones, D.W.Palmer et al., Phys. Rev. B, 86, 045313 (2012). http://dx.doi.org/10.1103/PhysRevB.86.045313

11. H.Pinto, D.W.Palmer, R.Jones et al., J. Nanosci. Nanotechnol., 12, 8589 (2012). http://dx.doi.org/10.1166/jnn.2012.6821

12. M.Kaviani, P.Deak, B.Aradi et al., Nano Lett., 14, 4772 (2014). http://dx.doi.org/10.1021/nl501927y

13. R.Hoffmann, J. Chem. Phys., 39, 1397 (1963). http://dx.doi.org/10.1063/1.1734456

14. G.Blyholder, C.A.Coulson, Theoret. Chem. Data, 10, 316 (1968). http://dx.doi.org/10.1007/BF00526495

15. L.Lohr, P.Pyykko, Chem. Phys. Lett., 62, 333 (1979). http://dx.doi.org/10.1016/0009-2614(79)80191-8

16. J.Cerda, F.Soria, Phys. Rev. B, 61, 7965 (2000). http://dx.doi.org/10.1103/PhysRevB.61.7965

17. A.V.Akimov, O.V.Prezhdo, J. Math. Chem., 53, 528 (2015). http://dx.doi.org/10.1007/s10910-014-0433-y

18. C.A.Coulson, H.C.Longuet-Higgins, Proc. Roy. Soc. A, 191, 39 (1947); ibid, 192, 16 (1947).

19. A.Streitwieser, Molecular Orbital Theory for Organic Chemists, Wiley, New York (1961).

20. M.Gonzalez-Suarez, A. Aizman, R.Contreras, Theor. Chem. Acc., 126, 45 (2010). http://dx.doi.org/10.1007/s00214-009-0674-1

21. A.V.Luzanov, Functional Materials, 22, 514 (2015). http://dx.doi.org/10.15407/fm22.04.514

22. A.V.Luzanov, O.A.Zhikol, Functional Materials, 23, 63 (2016). http://dx.doi.org/10.15407/fm23.01.063

23. M.J.Frisch, G.W.Trucks, J.B.Schlegel et al., Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA (2010).

24. V.A.Pushkarchuk, S.Ya.Kilin, A.P.Nizovtsev et al., Optics and Spectroscopy, 99, 245 (2005); ibid, 108, 247 (2010).

25. A.S.Zyubin, A.M.Mebel, M.Hayash, J. Comput. Chem., 30, 119 (2009). http://dx.doi.org/10.1002/jcc.21042

26. A.Ranjbar, M.Babamoradi, M.H.Saani et al., Phys. Rev. B, 84, 165212 (2011). http://dx.doi.org/10.1103/PhysRevB.84.165212

27. Y.Ma, M.Rohlfing, A. Gali, Phys. Rev. B, 81, 041204 (2010). http://dx.doi.org/10.1103/PhysRevB.81.041204

28. S.Larsson, Chemical Physics: Electrons and Excitations, Taylor & Francis, Boca Raton (2012). http://dx.doi.org/10.1201/b11524

29. G.G.Pearson, Chemical Hardness: Applications from Molecules to Solids, Wiley-VCH, Weinheim (1997); http://dx.doi.org/10.1002/3527606173

Current number: