Funct. Mater. 2016; 23 (3): 398-403.

http://dx.doi.org/10.15407/fm23.03.398

Mutual influence of additives of Ca and Si on properties of Cr-doped YAG ceramics

M.A.Chaika, O.M.Vovk, N.A.Safronova, S.V.Parkhomenko, A.G.Doroshenko, A.V.Tolmachev

Institute for Single Crystals, STC "Institute for Single Crystals",National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

Cr-doped yttrium aluminum garnet ceramics with different concentration of additives Ca and Si were synthesized by vacuum reaction sintering. It was established that simultaneous doping with Ca and Si effects crucially on morphology and optical ceramics properties. Average grain size of such ceramics can reach to 1.08±0.06 μm that is much more less against the ceramics without Ca dopant. The optical properties of the ceramics deteriorate significantly with increase of Ca concentration. The degree of Cr4+ transformation to Cr3+ under air annealing is not well due to competition between Cr4+ and Si4+ ions to be charge compensated by Ca2+. Sintering aid SiO2, which used in widespread ceramic technology to produce the high optical quality ceramics based on YAG, cannot be applied to produce the Cr4+-doped YAG ceramics with Ca as a charge compensator.

Keywords: 
Cr:YAG, ceramics, optical absorption, morphology, sintering aid.
References: 

1. S.Zhu, Q.He, S.Wang et al., J. Laser Appl., 26, 032009 (2014).
http://dx.doi.org/10.2351/1.4870435
 
2. Y.Shimony, Z.Burshtein, Y.Kalisky, IEEE J. Quant. Electron., 31, 1738 (1995).
http://dx.doi.org/10.1109/3.466043
 
3. P.M.W.French, A.V.Shestakov, N.H.Rizvi et al., Opt. Lett., 18, 39 (1993).
http://dx.doi.org/10.1364/OL.18.000039
 
4. A.Sennaroglu, Opt. Commun., 192, 83 (2001).
http://dx.doi.org/10.1016/S0030-4018(01)01170-1
 
5. R.Feldman, Y.Shimony, Z.Burshtein, Opt. Mater., 24, 333 (2003).
http://dx.doi.org/10.1016/S0925-3467(03)00146-0
 
6. S.Kochawattana, A.Stevenson, S.H.Lee et al., J. Eur. Ceram. Soc., 28, 1527 (2008).
http://dx.doi.org/10.1016/j.jeurceramsoc.2007.12.006
 
7. J.Lu, K.I.Ueda, H.Yagi, Yanagitani et al., J. Alloys Compd., 341, 220 (2002).
http://dx.doi.org/10.1016/S0925-8388(02)00083-X
 
8. A.Ikesue, I.Furusato, K.Kamata, J. Am. Ceram. Soc., 78, 225 (1995).
http://dx.doi.org/10.1111/j.1151-2916.1995.tb08389.x
 
9. A.J.Stevenson, X.Li, M.Martinez et al., J. Am. Ceram. Soc., 94, 1380 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2010.04260.x
 
10. Y.Kuru, E.O. Savasir, S.Z.Nergiz et al., Phys. Status Solidi., 5, 3383 (2008).
http://dx.doi.org/10.1002/pssc.200778902
 
11. T.Zhou, L.Zhang, H.Yang et al., J. Am. Ceram. Soc., 98, 2459 (2015).
http://dx.doi.org/10.1111/jace.13616
 
12. A.Ikesue, K.Yoshida, K.Kamata et al., J. Am. Ceram. Soc., 79, 507 (1996).
http://dx.doi.org/10.1111/j.1151-2916.1996.tb08154.x
 
13. W.Liu, J.Li, J.Liu et al., Ceram. Int., 40, 8879 (2014).
http://dx.doi.org/10.1016/j.ceramint.2013.12.152
 
14. I.O.Vorona, R.P.Yavetskiy, O.L.Shpilinskaya et al., Tech. Phys. Lett., 41, 496 (2015).
http://dx.doi.org/10.1134/S1063785015050302
 
15. J.Kvapil, B.Perner, B.Manek et al., Cryst. Res. Technol., 20, 473 (1985).
http://dx.doi.org/10.1002/crat.2170200410
 
16. M.M.Kuklja, J. Phys.:Condens. Matter., 12, 2953 (2000).
http://dx.doi.org/10.1088/0953-8984/12/13/307
 
17. L.Schuh, R.Metselaar, J. Appl. Phys., 66, 2627 (1989).
http://dx.doi.org/10.1063/1.344485
 
18. Y.Wang, L.Zhang, Y.Fan et al., J. Am. Ceram. Soc., 88, 284 (2005).
http://dx.doi.org/10.1111/j.1551-2916.2005.00071.x

Current number: