Funct. Mater. 2016; 23 (3): 427-432.

http://dx.doi.org/10.15407/fm23.03.427

Degradation of lignin in cassava residue with Phanerochaete chrysosporium by solid state cultivation

Bin Xu, Huixing Li, Chaojun Du, Ying Wang, Bin Li

School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, P.R. China

Abstract: 

Cassava residue is a lignocellulosic waste byproduct in cassava-based ethanol production. Bioconversion of this waste to methane is one choice to solve its disposal problem. The bioconversion of lignocellulosic wastes could be enhanced through lignin degradation by solid state cultivation (SSC) with Phanerochaete chrysosporium. In this study, effects of moisture content, veratryl alcohol concentration and pH on lignin degradation of P. chrysosporium in solid cassava residue substrate cultivation were examined. Results showed that lignin degradation were significantly affected by moisture content and veratryl alcohol concentration. The optimal cultivation conditions for lignin degradation were pH 4.5, moisture content 66% and veratryl alcohol concentration 5.70 mM/kg. Within fourteen days of cultivation at these optimal conditions, lignin degradation mainly occurred in the first six days and lignin loss were 28.36±0.25%. Moreover, microscopic structure observation demonstrated that the structure of cassava residue was destroyed. The degradation of lignin and breakdown of the cassava residue structure by P. chrysosporium in SSC would provide a new approach to facilitate the bioconversion of cassava residue to methane in the future application.

Keywords: 
Cassava residue, Phanerochaete chrysosporium, lignin degradation, bioconversion.
References: 

1. H. Li, R. Zhang, L. Tang, J. Zhang, Z. Mao, Chin. J. Chem. Eng., 23, 227. 2015.
http://dx.doi.org/10.1016/j.cjche.2014.11.001
 
2. Q. H. Zhang, et al., Bioresour. Technol., 102, 8899, 2011.
http://dx.doi.org/10.1016/j.biortech.2011.06.061
 
3. Q. H. Zhang, L. Tang, J. H. Zhang, Z. G. Mao, L. Jiang, Bioresour. Technol., 102, 3958, 2011.
http://dx.doi.org/10.1016/j.biortech.2010.12.031
 
4. F. Monlau, A. Barakat, E. Trably, C. Dumas, et al. Crit. Rev. Env. Sci. Technol., 43, 260, 2013.
http://dx.doi.org/10.1080/10643389.2011.604258
 
5. M. Tuomela, M. Vikman, A. Hatakka, M. Itvaara, Bioresour. Technol., 72, 169, 2000.
http://dx.doi.org/10.1016/S0960-8524(99)00104-2
 
6. D. E. Akin, Biofuel Bioprod. Bior., 2, 288, 2008.
http://dx.doi.org/10.1002/bbb.76
 
7. N. Mosier, C. Wyman, B. Dale et al., Bioresour. Technol., 96, 673, 2005.
http://dx.doi.org/10.1016/j.biortech.2004.06.025
 
8. A. T. Martinez, F. J. Ruiz-Duecas, M. J. Martinez et al., Curr. Opin. Biotechnol., 20, 348, 2009.
http://dx.doi.org/10.1016/j.copbio.2009.05.002
 
9. R. Gupta, G. Mehta, Y. P. Khasa, R. C. Kuhad, Biodegradation, . 22, 797, 2011.
http://dx.doi.org/10.1007/s10532-010-9404-6
 
10. H. L. Huang, et al., Int. Biodeterior. Biodegrad., 61, 331, 2008.
http://dx.doi.org/10.1016/j.ibiod.2007.06.014
 
11. R. R. Singhania, A. K. Patel, C. R. Soccol, A. Pandey, Biochem. Eng. J., 44, 13, 2009.
http://dx.doi.org/10.1016/j.bej.2008.10.019
 
12. R. P. Tengerdy, G. Szakacs, Biochem. Eng. J., 13, 169, 2003.
http://dx.doi.org/10.1016/S1369-703X(02)00129-8
 
13. A. Ghosh, B. C. Bhattacharyya, Bioprocess Eng., 20, 297, 1999.
http://dx.doi.org/10.1007/s004490050594
 
14. S. Basu, R. Gaur, J. Gomes, T. R. Sreekrishnan, V. S. Bisaria, J. Biosci. Bioeng., 93, 25, 2002.
http://dx.doi.org/10.1016/S1389-1723(02)80049-4
 
15. P. Shrestha, M. Rasmussen, S. K. Khanal, et al., J. Agric. Food Chem., 56, 3918, 2008.
http://dx.doi.org/10.1021/jf0728404
 
16. D. Singh, S. Chen, Appl. Microbiol. Biotechnol., 81, 399, 2008.
http://dx.doi.org/10.1007/s00253-008-1706-9
 
17. J. S. Bak, J. K. Ko, I. G. Choi, Y. C. Park, et al., Biotechnol. Bioeng., 104, 471, 2009.
http://dx.doi.org/10.1002/bit.22423
 
18. L. Zhao, et al., Bioresour. Technol., 114, 365, 2012.
http://dx.doi.org/10.1016/j.biortech.2012.03.076
 
19 J. Shi, M. S. Chinn, R. R., Bioresour. Technol., 99, 6556, 2008.
http://dx.doi.org/10.1016/j.biortech.2007.11.069
 
20. A. I. Hatakka, A. K. Uusi-Rauva, Eur. J. Appl. Microbiol. Biotechnol., 17, 235, 1983.
http://dx.doi.org/10.1007/BF00510422
 
21. X. Chen, J. H. Wang, D. S. Li, Biochem. Eng. J., 34, 179, 2007.
http://dx.doi.org/10.1016/j.bej.2006.11.020
 
22. S. L. C. Ferreira, et al., Anal. Chim. Acta., 597, 179, 2007.
http://dx.doi.org/10.1016/j.aca.2007.07.011
 
23. K. Wang, et al., Bioresour. Technol., 148, 453, 2013.
http://dx.doi.org/10.1016/j.biortech.2013.08.095
 
24. M. Yu, G. Zeng, Y. Chen, H. Yu, et al., Process Biochem., 44, 17, 2009.
http://dx.doi.org/10.1016/j.procbio.2008.09.005
 
25. C. Wan, Y. Li, Biotechnol. Adv., 30, 1447, 2012.
http://dx.doi.org/10.1016/j.biotechadv.2012.03.003
 
26. F. Gassara, S. K. Brar, R. Tyagi, R. P. et al., Biotechnol. Bioproc. E., 16, 343, 2011.
http://dx.doi.org/10.1007/s12257-010-0264-z
 
27. S. H. Denison, Fungal Genet. Biol., 29, 61, 2000.
http://dx.doi.org/10.1006/fgbi.2000.1188
 
28. F. Zadrahil, H. Brunnert, J. Appl. Microbiol. Biotechnol., 11, 183, 1981.
http://dx.doi.org/10.1007/BF00511259
 
29. M. Schubert, S. Mourad, F. Schwarze, Appl. Microbiol. Biotechnol., 85, 703, 2010.
http://dx.doi.org/10.1007/s00253-009-2185-3
 
30. X. Zou, H. Hang, C. Chen, J. Chu, et al., J. Ind. Microbiol. Biotechnol., 35, 1637, 2008.
http://dx.doi.org/10.1007/s10295-008-0407-9
 
31. R. Amirta, T. Tanabe, T. Watanabe, et al., J. Biotechnol., 123, 71, 2006.
http://dx.doi.org/10.1016/j.jbiotec.2005.10.004
 
32. H. Take, Y. Andou, Y. Nakamura, F. Kobayashi, et al., Biochem. Eng. J., 28, 30, 2006.
http://dx.doi.org/10.1016/j.bej.2005.08.036

Current number: