Funct. Mater. 2016; 23 (4): 576-581.

https://doi.org/10.15407/fm23.04.398

Influence of external pressure on conductivity of systems based on polyethylene oxide and carbon nanotubes

E.A.Lysenkov1, V.V.Klepko2

1V.Sukhomlynskiy Mykolayiv National University, 24 Nikol'ska Str., 54030 Mykolayiv, Ukraine
2Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkiv Highway, 02160 Kyiv, Ukraine

Abstract: 

Features of conductivity of systems based on polyethylene oxide and carbon nanotubes depending on the value of external pressure are studied using method of impedance spectroscopy. It is revealed that dependence of conductivity on pressure shows percolation behavior. The mechanisms of nonlinear change of conductivity with the pressure increase are described and a scheme for their explanation is offered. It is shown that the investigated systems are perspective piezoresistive materials.

Keywords: 
polymer nanocomposites, carbon nanotubes, conductivity, percolation behavior, external pressure.
References: 

1. D.R.Paul, L.M.Robeson, Polymer, 49, 3187 (2008). https://doi.org/10.1016/j.polymer.2008.04.017

2. G.Mittal, V.Dhand, K.Y.Rhee et al., J. Indust. Engin. Chem., 21, 11 (2015). https://doi.org/10.1016/j.jiec.2014.03.022

3. E.Lysenkov, I.Melnyk, L.Bulavin et al., Physics of Liquid Matter: Modern Problems, Springer Proc. in Physics, ed. by L.Bulavin, N.Lebovka, Springer Intern. Publishing, Switzerland (2015), p.165.

4. W.Bauhofer, J.Z.Kovacs, Compos. Sci. Technol., 69, 1486 (2009). https://doi.org/10.1016/j.compscitech.2008.06.018

5. L.Lisetski, M.Soskin, N.Lebovka, Physics of Liquid Matter: Modern Problems, Springer Proc. in Physics, ed. by L.Bulavin, N.Lebovka, Springer Intern. Publishing, Switzerland (2015), p.242.

6. L.A.Bulavin, N.I.Lebovka, Y.A.Kyslyi et al., Ukr. J. Phys., 55, 1 (2010).

7. W.Luheng, D.Tianhuai, W.Peng, Sens. and Actuat. A, 135, 587 (2007). https://doi.org/10.1016/j.sna.2006.10.019

8. W.Obitayo, T.Liu, J. Sens., ID 652438 (2012).

9. A.Ramaratnam, N.Jalili, J. Intel. Mater. Syst. Struct., 17, 199 (2006). https://doi.org/10.1177/1045389X06055282

10. I.Kang, M.J.Schulz, J.H.Kim et al., Smart Mater. Struct., 15, 737 (2006). https://doi.org/10.1088/0964-1726/15/3/009

11. M.Park, H.Kim, J.P.Youngblood, Nanotechnology, 19, 055705 (2008). https://doi.org/10.1088/0957-4484/19/05/055705

12. E.A.Lysenkov, V.V.Klepko, J. Nano-Electron. Phys., 5, 03052 (2013).

13. V.V.Klepko, E.A.Lysenkov, Ukr. J. Phys., 60, 944 (2015). https://doi.org/10.15407/ujpe60.09.0944

14. E.A.Lysenkov, V.V.Klepko, V.M.Golovanets et al., Ukr. J. Phys., 59, 906 (2014). https://doi.org/10.15407/ujpe59.09.0906

15. A.V.Melezhyk, Yu.I.Sementsov, V.V.Yanchenko, Prikl. Khim., 78, 938 (2005).

16. A.Kyritsis, P.Pissis, J.Grammatikakis, J. Polymer Sci.:Part B: Polymer Phys., 33, 1737 (1995). https://doi.org/10.1002/polb.1995.090331205

17. E.A.Lysenkov, V.V.Klepko, Ukr. J. Phys., 56, 484 (2011).

18. M.Hussain, Y.-H.Choa, K.Niihara, Composites: Part A, 32, 1689 (2001). https://doi.org/10.1016/S1359-835X(01)00035-5

19. Ye.P.Mamunya, H.Zois, L.Apekis et al., Powder Technol., 140, 49 (2004). https://doi.org/10.1016/j.powtec.2003.11.010

20. D.Stauffer, A.Aharony, Introduction to Percolation Theory, Taylor and Francis, London (1994).

21. M.Sahimi, Applications of Percolation Theory, Taylor and Francis, London (1994).

Current number: