Funct. Mater. 2016; 23 (4): 599-611.

https://doi.org/10.15407/fm23.04.420

Modified participation ratio approach: application to edge-localized states in carbon nanoclusters

A.V.Luzanov

SSI Institute of Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61078 Kharkiv, Ukraine

Abstract: 

For nanoclusters and solids, the localization analysis of one-electron states, or MOs (molecular orbitals), is frequently provided by using the so-called participation ratio (PR) index. To this conventional PR approach, we add for each MO the new index σIPR which we define as an average fluctuation of the inverse PR (IPR) value. Typically, the σIPR index displays a significant sensitivity to any spatial irregularity in the MO distribution over molecule. We apply the thus extended PR analysis to the graphene nanoflakes of different types, and small nanodiamond structures including NV color centers as well. The proposed scheme has the virtue of being quite simple, and in case of huge clusters it allows one to rapidly detect orbitals with unusual non-uniform distribution. In particular, the localization of edge states in graphene molecules is examined in this way.

Keywords: 
participation ratio, edge localization, graphene nanoflakes, nanodiamonds, NV centers.
References: 

1. J.T.Edwards, D.J.Thouless, J. Phys. C, 5, 807 (1972); D.J.Thouless, Phys. Rep., 13, 93 (1974). https://doi.org/10.1016/0370-1573(74)90029-5

2. F.Evers, A.D.Mirlin, Rev. Mod. Phys., 80, 1355 (2008). https://doi.org/10.1103/RevModPhys.80.1355

3. R.J.Bell, P.Dean, D.C.Hibbins-Butler, J. Phys. C, 3, 63 (1970).

4. A.V.Luzanov, V.E.Umanski, Teor. Eksperim. Chem., 13, 162 (1977).

5. A.V.Luzanov, O.A.Zhikol, Int. J. Quantum Chem., 104, 167 (2005). https://doi.org/10.1002/qua.20511

6. V.May, O.Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems, Wiley-VCH, Weinheim (2011). https://doi.org/10.1002/9783527633791

7. J.Pipek, G.Mezey, J. Chem. Phys., 90, 4916 (1989). https://doi.org/10.1063/1.456588

8. I.Tamm, Fiz. Zh. Soviet Union, 1, 733 (1932).

9. J.Koutecky, Adv. Chem. Phys., 9, 85 (1965). https://doi.org/10.1002/9780470143551.ch2

10. S.G.Davison, J.D.Levine, Solid State Phys., 25, 32 (1970). https://doi.org/10.1016/S0081-1947(08)60008-9

11. S.G.Davison, M.Steslicka, Basic Theory of Surface States, Clarendon Press, Oxford (1996).

12. K.Sattler, in: Handbook of Thin Film Materials, v.5, ed. by H.S.Nalwa, Academic, New York (2002), p.61.

13. Y.-W.Son, M.L.Cohen, S.G.Louie, Nature, 444, 347 (2006). https://doi.org/10.1038/nature05180

14. M.Nishida, J. Appl. Phys., 104, 086101 (2008). https://doi.org/10.1063/1.3000656

15. G.W.Bryant, J. Comput. Theor. Nanosci., 6, 1262 (2009). https://doi.org/10.1166/jctn.2009.1174

16. L.Jiang, Y.Zheng, C.Yi et al., Phys. Rev. B, 80, 155454 (2009) https://doi.org/10.1103/PhysRevB.80.155454

17. H.M.Luhavaya, M.V.Pavlov, A.Yu.Ermilov, N.F.Stepanov, Zh. Fiz. Khim. A, 86, 1261 (2012).

18. I.A.Denisov, A.A.Zimin, L.A.Bursill, P.I.Belobrov, J. Sib. Fed. Univ. Math. Phys., 7, 3 (2014).

19. O.-A.Dobrescu, M.Apostol, Can. J. Phys., 93, 580 (2015). https://doi.org/10.1139/cjp-2014-0313

20. A.V.Luzanov, J. Struct. Chem., 55, 799 (2014); Functional Materials, 22, 514 (2015). https://doi.org/10.15407/fm22.04.514

21. A.V.Luzanov, Functional Materials, 21, 437 (2014). https://doi.org/10.15407/fm21.04.437

22. N.C.Murphy, R.Wortis, W.A.Atkinson, Phys. Rev. B, 83, 184206 (2011). https://doi.org/10.1103/PhysRevB.83.184206

23. J.E.Lennard-Jones, Proc. Roy. Soc. A, 158, 280 (1937). https://doi.org/10.1098/rspa.1937.0020

24. I.S.Gradshteyn, I.M.Ryzhik, Table of Integrals, Series, and Products, Academic, San Diego, CA (2007).

25. G.F.Kventsel, Teor. Eksper. Khim., 5, 287 (1972).

26. S.E.Stein, R.L.Brown, Carbon, 23, 105 (1985); J. Am. Chem. Soc., 109, 3721 (1987). https://doi.org/10.1021/ja00246a033

27. K.Nakada, M.Fujita, G.Dresselhaus, M.S.Dresselhaus, Phys. Rev. B, 54, 17954 (1996). https://doi.org/10.1103/PhysRevB.54.17954

28. M.Fujita, K.Wakabayashi, K.Nakada, K.Kushakabe, J. Phys. Soc. Jpn., 65, 1920 (1996). https://doi.org/10.1143/JPSJ.65.1920

29. T.Enoki, Y.Kobayashi, K.Fukui, Int. Rev. Phys. Chem., 26, 609 (2007). https://doi.org/10.1080/01442350701611991

30. M.Vanevic, V.M.Stojanovi, M.Kindermann, Phys. Rev. B, 80, 045410 (2009). https://doi.org/10.1103/PhysRevB.80.045410

31. Y.Kobayashi, K.Fukui, T.Enoki et al., Phys. Rev. B, 71, 193406 (2005). https://doi.org/10.1103/PhysRevB.71.193406

32. Y.Niimi, T.Matsui, H.Kambara et al., Phys. Rev. B, 73, 085421 (2006). https://doi.org/10.1103/PhysRevB.73.085421

33. K.Sugawara, T.Sato, S.Souma et al., Phys. Rev. B, 73, 045124 (2006). https://doi.org/10.1103/PhysRevB.73.045124

34. A.V.Luzanov, in: Practical Aspects of Computational Chemistry IV, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2016).

35. Physics and Applications of CVD Diamond, ed. by C.Nebel, M.Nesladek, Wiley, Weinheim, p. 151 (2008).

36. A.Kruger, Carbon Materials and Nanotechnology, Wiley-VCH, Weinheim (2010). https://doi.org/10.1002/9783527629602

37. V.Georgakilas, J.A.Perman, J.Tucek, R.Zboril, Chem. Rev., 115, 4744 (2015). https://doi.org/10.1021/cr500304f

38. A.V.Luzanov, O.A.Zhikol, I.V.Omelchenko et al., Functional Materials, in press.

39. R.Hoffmann, J. Chem. Phys., 39, 1397 (1963). https://doi.org/10.1063/1.1734456

40. A.V.Luzanov, O.A.Zhikol, Functional Materials, 23, 63 (2016). https://doi.org/10.15407/fm23.01.063

41. A.Konishi, T.Kubo, in: Chemical Science of Electron Systems, ed. by T.Akasaka, A.Osuka, S.Fukuzumi et al., Springer, Japan (2015), p.337. https://doi.org/10.1007/978-4-431-55357-1_20

42. O.Ivanciuc, D.J.Klein, L.Bytautas, Carbon, 40, 2063 (2002). https://doi.org/10.1016/S0008-6223(02)00065-9

43. W.Jaskolski, A.Ayuela, M.Pelc et al., Phys. Rev. B, 83, 235424 (2011). https://doi.org/10.1103/PhysRevB.83.235424

44. E K.Fujisawa, R.Cruz-Silva, K.-S.Yang et al., J. Mater. Chem. A, 2, 9532 (2014). https://doi.org/10.1039/C4TA00936C

45. F.London, J. Phys. Radium, 8, 397 (1937); https://doi.org/10.1051/jphysrad:01937008010039700 T.E.Peacock, Electronic Properties of Aromatic and Heterocyclic Molecules, Academic, London (1965).

46. T.E.Stacey, D.C.Fredrickson, Dalton Trans., 41, 7801 (2012). https://doi.org/10.1039/c2dt30298e

47. N.A.Popov, J. Struct. Chem., 11, 670 (1971). https://doi.org/10.1007/BF00743441

48. P.W.Fowler, E.Stainer, Chem. Phys. Lett., 364, 259 (2002). https://doi.org/10.1016/S0009-2614(02)01244-7

49. K.Wakabayashi, M.Fujita, H.Ajiki, M.Sigrist, Phys. Rev. B, 59, 8271 (1999). https://doi.org/10.1103/PhysRevB.59.8271

50. K.Kusakabe, M.Maruyama, Phys. Rev. B, 67, 092406 (2003). https://doi.org/10.1103/PhysRevB.67.092406

51. J.Fernandez-Rossier, J.J.Palacios, Phys. Rev. Lett., 99, 177204 (2007). https://doi.org/10.1103/PhysRevLett.99.177204

52. O.V.Yazyev, Rep. Prog. Phys., 73, 056501 (2010). https://doi.org/10.1088/0034-4885/73/5/056501

53. A.V.Luzanov, O.V.Prezhdo, J. Chem. Phys., 125, 154106 (2006). https://doi.org/10.1063/1.2360262

54. M.Head-Gordon, Chem. Phys. Lett., 372, 508 (2003). https://doi.org/10.1016/S0009-2614(03)00422-6

55. T.Pedersen, C.Flindt, J.Pedersen et al., Phys. Rev. Lett., 100, 136804 (2008). https://doi.org/10.1103/PhysRevLett.100.136804

56. LP.Biro, P.Nemes-Incze, P.Lambin, Nanoscale, 4, 1824 (2012). https://doi.org/10.1039/C1NR11067E

57. M.Wierzbicki, R.Swirkowicz, J.Barnas, Phys. Rev., 88, 235434 (2013). https://doi.org/10.1103/PhysRevB.88.235434

Current number: