Funct. Mater. 2016; 23 (4): 676-681.

https://doi.org/10.15407/fm23.04.484

Low-temperature directed crystallization as a realization of Green Chemistry principles.

L.P.Eksperiandova

Institute for Single Crystals, STC Institute for Single Crystals, National Academy of Sciences of Ukraine,60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

It is proposed a hybrid method for determination of water using low temperature directed crystallization. The length of the opaque upper part of obtained ice ingot depends on total salinity of water and serves as an analytical signal. Simultaneously the presence of dominant anions can be visually determined by configuration of the opaque part. The concentrate of micro-impurities localized after the crystallization in the upper part can be separated from the ice ingot and left to the following analysis. The method is compared favorably with such standard methods as gravimetry and conductometry used for water salinity determination. The reagentless method complies with the principles of Green Chemistry, since its application does not lead to pollution of the environment.

Keywords: 
low temperature directed crystallization; natural water; total water salinity; anionic macro-composition; microimpurity pre-concentration; Green Chemistry.
References: 

1. A.B.Blank, Analysis of Pure Substances by Means of Crystallization Preconcentration, Khimiya, Moscow (1986) [in Russian].

2. L.P.Eksperiandova, I.I.Fokina, T.I.Ivkova, A.B.Blank, J. Trace Microprobe Techn., 19, 71 (2001). https://doi.org/10.1081/TMA-100001462

3. L.P.Eksperiandova, A.B.Blank, I.I.Fokina et al., Anal. Chim. Acta, 396, 317 (1999). https://doi.org/10.1016/S0003-2670(99)00433-X

4. L.P.Eksperiandova, I.B.Shcherbakov, J. Sol. Chem., 35, 1075 (2006). https://doi.org/10.1007/s10953-006-9047-8

5. R.Halde, Water Res., 14, 575 (1980). https://doi.org/10.1016/0043-1354(80)90115-3

6. F.van der Ham, M.M.Seckler, G.J.Witkamp, Chem. Eng. Process., 43, 161 (2004). https://doi.org/10.1016/S0255-2701(03)00018-7

7. K.Watanabe, Y.Muto, M.Mizoguchi, Cryst. Growth Design., 1, 207 (2001). https://doi.org/10.1021/cg005535i

8. Y.Wang, L.L.Regel, W.R.Wilcox, Crystal Growth Design., 2, 453 (2002). https://doi.org/10.1021/cg0255063

9. G.H.Smith, M.P.Tasker, Anal. Chim. Acta. 33, 559 (1965). https://doi.org/10.1016/S0003-2670(01)84939-4

10. J.Shapiro, Science, 133, 2063 (1961), https://doi.org/10.1126/science.133.3470.2063

11. L.P.Eksperiandova, A.B.Blank, Zh. Fiz. Khimii, 52, 1837 (1976).

12. W.G.Pfann, Zone Melting, John Willey & Sons, New York, London, Sydney (1966).

13. L.P.Eksperiandova, Functional Materials, 17, 401 (2010).

14. L.P.Eksperiandova, I.I.Fokina, A.B.Blank, N.N.Grebenyuk, J. Anal. Chem., 57, 194 (2002). https://doi.org/10.1023/A:1014479912553

15. A.B.Blank, L.P.Eksperiandova, X-Ray Spectrometry, 27, 147 (1998). https://doi.org/10.1002/(SICI)1097-4539(199805/06)27:3<147::AID-XRS263>3.0.CO;2-P

16. J.Injuk, R.van Grieken, A.B.Blank et al., Handbook of Practical X-ray Fluorescence Analysis, Springer Verlag, Berlin, Wien, New York, Tokyo (2006).

17. A.B.Blank, Analytical Chemistry in the Study and Production of Inorganic Functional Materials, Institute for Single Crystals, Kharkov (2005) [in Russian].

Current number: