Funct. Mater. 2017; 24 (1): 005-010.

doi:https://doi.org/10.15407/fm24.01.005

Nonlinear optical response of the KDP single crystals with incorporated TiO2 nanoparticles in visible range: effect of the nanoparticles concentration

A.S.Popov1, A.V.Uklein1, V.V.Multian1, I.M.Pritula2, P.I.Budnyk1, O.Kh.Khasanov3, V.Ya.Gayvoronsky1

1Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauki Ave., 03028 Kyiv, Ukraine
2Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauki Ave., 61001 Kharkiv, Ukraine
3Scientific-Practical Material Research Centre, National Academy of Sciences of Belarus, 19 Brovki Str., 220072 Minsk, Belarus

Abstract: 

Nonlinear optical response of KDP single crystals with incorporated TiO2 nanoparticles (NPs) was studied within the self-action of picosecond laser pulses at 532 nm and second harmonic generation at 800 nm femtosecond laser pulses pump. The optical characterization of the composites KDP:TiO2 was provided by elastic scattering indicatrices analyzes at 1064 nm. It was shown the significant reduction of the elastic scattering and self-action effects efficiencies in TiO2 NPs doped KDP single crystals cut from pyramidal growth sector. The effect was attributed to the reduction of the non-controlled impurities concentration in the KDP:TiO2 due to the NPs incorporation. The enhancement of second harmonic generation efficiency at about 60 % for pyramidal and 35 % for prismatic growth sectors was observed in composite crystals versus the nominally pure KDP matrix within the femtosecond pulses excitation at 800 nm. The obtained results indicate high potential for utilization of the KDP:TiO2 single crystals in light frequency conversion.

Keywords: 
potassium dihydrogen phosphate (KDP), second harmonic generation, elastic optical scattering, nonlinear optical response.
References: 

1. J.B.Benedict, P.M.Wallace, P.J.Reid et al., Adv. Mater., 15, 1068 (2003). https://doi.org/10.1002/adma.200303715

2. M.Rifani, Y.-Y.Yin, D.S.Elliott et al., J. Am. Chem. Soc., 117, 7572 (1995). https://doi.org/10.1021/ja00133a042

3. G.Li, G.Zheng, Y. Qi et al., High Pow. Laser Sci. and Eng., 1, 006 (2014).

4. K.Boopathi, P.Rajesh, P.Ramasamy et al., Opt. Mat., 35, 954 (2013). https://doi.org/10.1016/j.optmat.2012.11.015

5. V.Ya.Gayvoronsky, M.A.Kopylovsky, M.S.Brodyn et al., in: Nanomaterials Imaging Techniques, Surface Studies, and Applications, Edition: Springer Proc. Phys., v.146, Springer, New York, USA (2013), p.349. https://doi.org/10.1007/978-1-4614-7675-7_24

6. A.S.Popov, A.V.Uklein, V.V.Multian et al., Opt. Commun., 379, 45 (2016). https://doi.org/10.1016/j.optcom.2016.05.060

7. I.M.Pritula, A.V.Kosinova, D.A.Vorontsov et al., J. Cryst. Growth, 355, 26 (2012). https://doi.org/10.1016/j.jcrysgro.2012.06.033

8. H.I.Elim, W.Ji, A.H.Yuwono et al., Appl. Phys. Lett., 82, 2691 (2003). https://doi.org/10.1063/1.1568544

9. E.B.Rudneva, V.L.Manomenova, A.E.Voloshin et al., Crystallogr. Rep., 51, 142 (2006). https://doi.org/10.1134/S106377450601024X

10. A.Bensouici, J.L.Plaza, O.Halimi et al., J. Optoelectron. Adv. Mater., 10, 3051 (2008).

11. V.Ya.Gayvoronsky, M.A.Kopylovsky, M.S.Brodyn et al., Laser Phys. Lett., 10, 035401 (2013). https://doi.org/10.1088/1612-2011/10/3/035401

12. L.A.Golovan, G.I.Petrov, V.Ya.Gayvoronsky et al., Laser Phys. Lett., 11, 0755901 (2014). https://doi.org/10.1088/1612-2011/11/7/075901

13. L.A.Golovan, I.A.Ozheredov, A.P.Shkurinov et al., in: Abstr. Int. Conf. Coherent Nonl. Opt. (ICONO), Moscow, Russia (2013).

14. I.Pritula, V.Gayvoronsky, M.Kopylovsky et al., Functional Materials. 15, 420 (2008).

15. I.Pritula, V.Gayvoronsky, M.Kolybaeva et al., Opt. Mat., 33, 632 (2011). https://doi.org/10.1016/j.optmat.2010.11.022

16. V.G.Grachev, I.A.Vrable, G.I.Malovichko et al., J. Appl. Phys., 112, 014315 (2012). https://doi.org/10.1063/1.4733301

17. V.G.Grachev, R.Tse, G.I.Malovichko et al., J. Appl. Phys., 119, 034301 (2016). https://doi.org/10.1063/1.4939731

18. I.M. Pritula, Y.N. Velikhov, in: R.B.Lal, D.O.Frazier (Eds.), Proc. SPIE, v.3793 (1999), p.202.

19. I.N.Ogorodnikov, V.Y.Yakovlev, B.V.Shulgin et al., Phys. Solid State, 44, 880 (2002). https://doi.org/10.1134/1.1477487

20. V.Ya.Gayvoronsky, M.A.Kopylovsky, V.A.Yatsyna et al., Functional Materials, 19, 54 (2012).

21. O.Khasanov, O.Fedotova, G.Rusetsky et al., in: Abstr. Int. Conf. Coherent Nonl. Opt. (ICONO), Minsk, Belarus (2016).

Current number: