Funct. Mater. 2017; 24 (1): 016-020.

doi:https://doi.org/10.15407/fm24.01.016

Abnormal enhancement of light output by cation mixing in ZnxMg1-xWO4 nanocrystals

I.A.Tupitsyna1, P.O.Maksimchuk1, A.G.Yakubovskaya1, A.M.Dubovik1, V.V.Seminko1, V.S.Zvereva1, O.G.Trubaeva1, K.O.Hubenko1, O.M.Vovk2, Y.V.Malyukin1

1Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

In the paper the effect of light output increase with maximum at x = 0.5 observed previously for the mixed ZnxMg1-xWO4 crystals is demonstrated for nanocrystals with the same composition. The enhancement of light output up to 3 times at the transition from bulk to nanosize was shown. This effect is determined by nonlinear dependence of concentration of oxygen vacancies with minimum at x = 0.5 for ZnxMg1-xWO4 nanocrystals.

Keywords: 
mixed Zn<sub>x</sub>Mg<sub>1-x</sub>WO<sub>4</sub> crystals, light output.
References: 

L.L.Nagornaya, B.V.Grinyov, A.M.Dubovik et al., IEEE Trans. Nucl. Sci., 56, 994 (2009). https://doi.org/10.1109/TNS.2009.2016342

2. H.Shang, Y.Wang, B.Milbrath et al., J. Luminescence, 121, 527 (2006). https://doi.org/10.1016/j.jlumin.2005.12.048

3. P.Lecoq, A.Annenkov et al., Inorganic Scintillators for Detector System. Physical Principles and Crystal Engineering, Springer, New York (2006).

4. A.N.Belsky, E.Auffray, P.Lecoq et al., IEEE Tran. Nucl. Sci., 48, 1095 (2001). https://doi.org/10.1109/23.958730

5. Y.Wu, D.Ding, S.Pan et al., J. Alloys Compd., 509, 366 (2011). https://doi.org/10.1016/j.jallcom.2010.09.027

6. K.Kamada, T.Endo, K.Tsutumi et al., Cryst. Growth Des., 11, 4484 (2011). https://doi.org/10.1021/cg200694a

7. Nattasuda Yawai, Warut Chewpraditkul, Ongsa Sakthong et al., Nucl. Inst. Meth. Phys. Res. A,http://dx.doi.org/10.1016/j.nima.2016.11.036 (2016). 

8. D.Spassky, S.Omelkov, H.Magi et al., Opt. Mater., 36, 1660 (2014). https://doi.org/10.1016/j.optmat.2013.12.039

9. N.Krutyak, V.Nagirnyi, D.Spassky et al., Rad. Measur. (2016). DOI - 10.1016/j.radmeas.2016.01.007 (2016).

10. Bing Yan, Fang Lei, J. Alloys Comp., 507, 460 (2010). https://doi.org/10.1016/j.jallcom.2010.07.203

11. N.V.Klassen, V.V.Kedrov, V.N.Kurlov et al., IEEE Trans. Nucl. Sci., 55, 1536 (2008). https://doi.org/10.1109/TNS.2008.924050

12. V.Pankratov, D.Millers, L.Grigorjeva et al., J, Phys. : Conf. Ser., 93, 012037 (2007).

13. A.G.Yakubovskaya, K.A.Katrunov, I.A.Tupitsyna et al., Functional Materials, 18, 446 (2011).

14. J.P.Reithmaier, L.Keldysh, V.Kulakovskii et al., Nature, 432, 197 (2004). https://doi.org/10.1038/nature02969

15. H.M.Shang, M.Bliss, S.Heald et al., J. Mater. Res., 22, 1527 (2007). https://doi.org/10.1557/JMR.2007.0215

16. S.H.Yu, M.Antonietti, H.Colfen, M.Giersig, Angew. Chem. Int. Ed. Engl., 41, 2356 (2002). https://doi.org/10.1002/1521-3773(20020703)41:13<2356::AID-ANIE2356>3.0.CO;2-U

17. P.Retif, S.Pinel, M.Toussaint et al., Theranostics, 5, 1030 (2015). https://doi.org/10.7150/thno.11642

18. A.-L.Bulin, A.Vasil'ev, A.Belsky et al,, Nanoscale, 7, 5744 (2015). https://doi.org/10.1039/C4NR07444K

19. F.A.Danevich, D.M.Chernyak, A.M.Dubovik et al., Nucl. Instr. Meth. Phys. Res. A, 608, 107 (2009). https://doi.org/10.1016/j.nima.2009.06.040

20. V.Nagirnyi, E.Feldbach, L.Jonsson et al., Nucl. Instr. Meth. Phys. Res. A, 486, 395 (2002). https://doi.org/10.1016/S0168-9002(02)00740-4

21. Cz.Koepke, A.Lempicki, J. Luminescence, 59, 33 (1994). https://doi.org/10.1016/0022-2313(94)90019-1

22. H.Kraus, V.B.Mikhailik, Y.Ramachers et al., Phys. Lett. B, 610, 37 (2005). https://doi.org/10.1016/j.physletb.2005.01.095

23. I.A.Tupitsyna, P.O.Maksimchuk, A.G.Yakubovskaya et al., Functional Materials, 23, 535 (2016). https://doi.org/10.15407/fm23.04.357

Current number: