Funct. Mater. 2017; 24 (1): 031-045.

doi:https://doi.org/10.15407/fm24.01.031

Peculiarities of obtaining diamond-(Fe-Cu-Ni-Sn) composite materials by hot pressing

E.Gevorkyan1, V.Mechnik2, N.Bondarenko2, R.Vovk3, S.Lytovchenko3, V.Chishkala3, O.Melnik1

1Ukrainian State Academy of Railway Transport, 7 Feyerbakh Sq., 61001 Kharkiv, Ukraine
2V.Bakul Institute for Superhard Materials, National Academy of Sciences of Ukraine, 2 Avtozavodskaya Str., 04074 Kyiv, Ukraine
3V.Karazin Kharkiv National University, 31 Kurchatov Ave., 61108 Kharkiv, Ukraine

Abstract: 

Structure formation processes were investigated depending on sintering temperature in hot pressing of diamond-(Fe-Cu-Ni-Sn) composition and their impact on physical and mechanical properties of obtained composite materials. Properties of the composites, such as hardness, wear resistance and strength limits in compressing and folding were studied. It was found that the composite obtained by hot pressing in the temperature range of 20-1000°C and under a pressure of 0.5-40 MPa had the best properties. The results were compared with mechanical properties of composites obtained earlier by sintering in molds placed in a furnace with hydrogen environment at 800°C during 1 h with subsequent hot repressing under different pressures.

Keywords: 
diamond, iron, copper, nickel, tin, interaction, interlayer, metal-bindered, composite, wear resistance.
References: 

1. V.V.Skorokhod, A.V.Ragulya, Poroshkova Metalurgiya, 3, 1 (1994).

2. V.V.Skorokhod, A.V.Ragulya, in: Advanced Materials and Technologies, VD Akademperiodika, Kiev, Ukraine (2003), p.7.

3. V.I.Lavrinenko, M.V.Novikov, Superhard Abrasive Materials in Machining: Encyclopedic Guide, INM im. M.V.Bakulya NAN Ukraine, Kiev (2013) [in Ukrainian].

4. A.L.Maystrenko, Formation of Structure of Composite Diamond-containing Materials in Technological Processes, Naukova Dumka, Kiev (2014) [in Russian].

5. N.A.Bondarenko, A.N.Zhukovskiy, V.A.Mechnik, Basics of Diamond Composite Materials for Rock Cutting Tool, INM im. M.V.Bakulya NAN Ukraine, Kiev (2008) [in Russian].

6. N.A.Novikov, N.A.Bondarenko, O.G.Kulik et al., Fiz. Mezomech., 7, 79 (2004).

7. N.A.Bondarenko, A.N.Zhukovskiy, V.A.Mechnik, Sverhtv. Mater., 6, 3 (2005).

8. N.A.Bondarenko, A.N.Zhukovskiy, V.A.Mechnik, Sverhtv. Mater., 1, 3 (2006).

9. N.A.Bondarenko, V.A.Mechnik, M.V.Suprun, Sverhtv. Mater., 4, 29 (2009).

10. N.A.Bondarenko, V.A.Mechnik, M.V.Suprun, Fiz. Khim. Tverd. Tila, 10, 463 (2009).

11. V.A.Mechnik, Probl. Mashinostr., 11, 72 (2011).

12. V.A.Mechnik, Fiz. Inzh. Poverhn., 11, 378 (2013).

13. V.A.Mechnik, Fiz.-Khim. Mehan. Mater., 5, 34 (2012).

14. V.A.Mechnik, Poroshk. Metal., 9, 115 (2013).

15. E.S.Gevorkyan, L.A.Timofeeva, V.A.Chishkala et al., Nanostrukt. Mater., 2, 46 (2006).

16. E.S.Gevorkyan, O.M.Melnik, V.A.Chishkala et al., Ogneup. Tehnich. Keramika, 7, 26 (2012).

17. P.S.Kislyy, E.S.Gevorkyan, V.A.Shkuropatenko et al., Sverhtv. Mater., 5, 28 (2010).

18. E.S.Gevorkyan, O.M.Melnik, V.A.Chishkala et al., Ogneup. Tehnich. Keramika, 7, 22 (2013).

19. N.A.Bondarenko, N.V.Novikov, V.A.Mechnik et al., Sverhtv. Mater., 6, 3 (2004).

20. N.V.Novikov, N.A.Bondarenko, A.N.Zhukovskiy et al., Fiz. Mezomehanika, 9, 107 (2006).

21. A.L.Maystrenko, S.A.Ivanov, V.P.Pereyaslov et al., Superhard Mater., 5, 39 (2000).

22. Patent UA 64247 (2005).

23. Patent UA 63989 (2011).

24. Patent UA 72841 (2012).

25. W.Kraus, G.Nolze, J. Appl. Cryst., 29, 301 (1996). https://doi.org/10.1107/S0021889895014920

26. Selected Powder Diffraction Data for Education Straining. Search Manual and Data Cards, USA: International Centre for Diffraction Data (1988).

27. G.V.Samsonov, Properties of Elements, Metallurgiya, Moscow (1976) [in Russian].

Current number: