Funct. Mater. 2017; 24 (1): 068-075.

doi:https://doi.org/10.15407/fm24.01.068

Influence of residual solvent on relaxation behavior of polymer films based on glycidyl derivatives of 3, 5, 7, 3',4'-pentahydroxyflavone

D.Mishurov1, O.Roshal2, O.Brovko3

1National Technical University "Kharkiv Polytechnic Institute", 21 Kyrpychova Str., 61002 Kharkiv, Ukraine
2Institute of Chemistry, V.Karazin Kharkiv National University, 4 Svoboda Sqr., 61022 Kharkiv, Ukraine
3Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Shose, 02160 Kyiv, Ukraine

Abstract: 

Structural parameters and optical anisotropy relaxation dynamics of cross-linked polymers obtained from 7,4'-diglycidyl-, 7,3',4'-triglycidyl- and 3,7,3',4'-tetraglycidyl ethers of quercetin (3,5,7,3',4'-pentahydroxyflavone) are investigated. Values of effective cross-linked density and molecular weight between the cross-linked units, as well as dynamics of after-poling polymer relaxation were analyzed for polymer films containing residual solvent (acetone) and solvent-free annealed samples. It was found that solvent removal leads to growth of cross-linked density and to decrease of molecular weight between the cross-linked units. It was found that relaxation dynamics of polymers based on 3,7,3',4'-tetraglycidyl quercetin does not depend on the presence of residual solvent. Solvent containing polymers based on 7,4'-diglycidyl- and 7,3',4'-triglycidyl ethers of quercetin have substantially faster relaxation dynamic than corresponding annealed polymers. The mechanism of the residual solvent influence on the relaxation dynamics of polymer films has been proposed.

Keywords: 
residual solvent; polymer films; chromophore; relaxation behavior.
References: 

1. J.Wu, H.Xiao, L.Qiu et al., RSC Adv., 4, 49737 (2014). https://doi.org/10.1039/C4RA09368B

2. S.R.Hammond, J.Sinness, S.Dubbury et al., J. Mater. Chem., 22, 6752 (2012). https://doi.org/10.1039/c2jm14915j

3. Y.V.Pereverzev, K.N.Gunnerson, O.V.Prezhdo et al., J. Phys. Chem. C, 112, 4355 (2008). https://doi.org/10.1021/jp077194q

4. X.Zhang, K.G.Yager, S.Kang et al., Macromolecules, 43, 1117 (2010). https://doi.org/10.1021/ma902168w

5. R.Meier, M.Schindler, P.Muller-Buschbaum, Phys. Rev. B. 84, 174205 (2011).

6. S.Schiissler, R.Richert, H.Bgissler, Macromolecules, 28, 2429 (1995). https://doi.org/10.1021/ma00111a042

7. J.Kostina, G.Bondarenko, M.Gringolts et al., Polym. Int., 62, 1566 (2013).

8. D.Alberga, G.F.Mangiatordi, L.Torsi et al., Phys. Chem. C, 118, 8641 (2014). https://doi.org/10.1021/jp410936t

9. N.Ramesh, P.K.Davis, J.M.Zielinski et al., J. Polymer Sci. Part B: Polymer Phys., 49, 1629 (2011).

10. B.A.Miller-Chou, J.L.Koenig, Prog. Polym. Sci., 28, 1223 (2003). https://doi.org/10.1016/S0079-6700(03)00045-5

11. V.V.Lebedev, T.A.Blank, V.L.Avramenko et al., Functional Materials, 16, 351 (2009).

12. D.Mishurov, A.Voronkin, A.Roshal, Struct. Chem. 27, 285 (2016).

13. A.O.Doroshenko, Spectral Data Lab Software, National University, Kharkiv (1999).

14. S.C.George, S.Thomas, Prog. Polym. Sci., 26, 985 (2001). https://doi.org/10.1016/S0079-6700(00)00036-8

15. J.Perlich, V.Korstgens, E.Metwalli et al., Macromolecules, 42, 337 (2009). https://doi.org/10.1021/ma801878j

16. L.Xu, A.Sharma, S.W.Joo et al., Langmuir, 30, 14808 (2014). https://doi.org/10.1021/la503319w

17. H.-Q.Xie, X.-D.Huang, J.-S.Guo, J. Appl. Polymer Sci., 60, 537 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960425)60:4<537::AID-APP7>3.0.CO;2-P

18. D.Mishurov, A.Voronkin, A.Roshal et al., Opt. Mater., 57, 179 (2016). https://doi.org/10.1016/j.optmat.2016.03.047

Current number: