Funct. Mater. 2017; 24 (1): 179-183.

doi:https://doi.org/10.15407/fm24.01.179

On application of X-ray aproximation method for studying the substructure of sufficiently perfect samples

S.V.Malykhin1, I.E.Garkusha2, V.A.Makhlay2, S.V.Surovitsky1, M.V.Reshetnyak1, S.S.Borisova1

1National Technical University "Kharkiv Polytechnical Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine
2National Scientific Center "Kharkiv Physical and Technical Institute", 1 Academicheskaya Str., 61108 Kharkiv, Ukraine

Abstract: 

The technique of X-ray diffraction investigation of coherence length and micro-strain level using approximation of diffraction line profiles by Gaussian and Cauchy functions as well as by harmonic analysis has been worked out for tungsten samples with quite perfect structure. The importance of right choice of a standard for obtaining the reasonable measurement results has been demonstrated. For the first approximation the possibility to use the spectral line width for calculation of the reflection true (physical) broadening has been shown. The contributions of basic instrumental factors into the reflection geometric broadening were estimated.

Keywords: 
X-ray diffraction, coherence length, micro-strain, approximation method, physical broadening.
References: 

1. Ya.S.Umansky, Yu.A.Skakov, A.N.Ivanov, L.N.Rastorguyev, Crystallography, X-ray Diffraction and Electron Microscopy, Metallurgia, Moscow (1982) [in Russian].

2. S.S.Gorelik, Yu.A.Skakov, L.N.Rastorguyev, X-Ray Analysis and Electronographic Analysis, MISIS, Moscow (1994) [in Russian].

3. M.A.Krivoglaz, Diffraction of X-rays and Thermal Neutrons by Real Crystals, Naukova Dumka, Kiev (1983) [in Russian].

4. L.I.Gladkikh, S.V.Malykhin, A.T.Pugachov, M.V.Reshetnjak, Structure Analysis for Materials Physics, NTU "KhPI" Publ., Kharkov (2014) [in Russian].

5. A.I.Danilenko, A.V.Kurdyumov, V.F.Britun, Electron Microscopy and Strength of Materials. Ser.: Materials Physics, Structure and Properties of Materials, 15 (2008) [in Russian].

6. B.E.Warren, X-Ray Diffraction, Dover Publications, New York (1990).

7. Y.Z.Estrin, N.V.Isaev, T.V.Grigorova et al., Low Temper. Phys., 34, 665 (2008). https://doi.org/10.1063/1.2967513

8. Y.Estrin, N.V.Isaev, S.V.Lubenets et al., Acta Mater., 54, 20 (2006). https://doi.org/10.1016/j.actamat.2006.07.036

9. A.M.Dovbnya, V.A.Mats, V.I.Sokolenko, Probl. Atom. Sci. and Techn., Ser.: Phys. Rad. Damage and Rad. Mater. Sci., No.5(81), 36 (2012).

10. V.A.Makhlaj, I.E.Garkusha, N.N.Aksenov et al., Phys. Scrip., T161, 014040 (2014).

11. I.E.Garkusha, S.V.Malykhin, V.A.Makhlaj et al., Techn. Phys., 84, 11 (2014).

12. T.Hirai, G.Pintsuk, J.Linke, M.Batilliot, J. Nucl. Mater., 390-391, 751 (2009).

13. M.Wirtz, J.Linke, G.Pintsuk et al., Phys. Scrip., T145, 014058 (2011).

14. M.A.Krivoglaz, Theory of X-Ray and Thermal Neutron Scattering by Real Crystals, Nauka, Moscow (1967) [in Russian].

15. D.M.Kheiker, L.S.Zevin, X-Ray Diffraction, Fizmatgiz, Moscow (1963) [in Russian].

Current number: