Funct. Mater. 2017; 24 (2): 221-225.

doi:https://doi.org/10.15407/fm24.02.221

Scintillation properties of europium doped RbCaCl3 crystals

N.V.Rebrova1, A.Yu.Grippa1, A.S.Pushak2, T.E.Gorbacheva1, V.Yu.Pedash1, V.L.Cherginets1, V.A.Tarasov1

1Institute for Scintillation Materials, STCInstitute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2Ukrainian Academy of Printing, 19 Pidgolosko Str., 79020 Lviv, Ukraine

Abstract: 

The scintillation properties of RbCa1-xEuxCl3 (x = 0.005, 0.03, 0.05, 0.08) single crystals grown from the charge obtained by the solution routine using the Bridgman-Stockbarger method are reported. The luminescence spectra of RbCa1-xEuxCl3 crystals show a single band with a maximum which position shifts from 437 to 443 nm with increase of mole fraction of Eu2+ from 0.005 to 0.08. The decay of the scintillation pulse can be described using single component and the decay time rises towards concentration of Eu2+ in crystals. The relative light yield achieves 55 per cent vs. NaI:Tl for RbCa0.92Eu0.08Cl3 sample.

Keywords: 
rubidium chloride, calcium chloride, europium, scintillator, luminescence.
References: 

1. K.Yang, M.Zhuravleva, C.L.Melcher, Phys. Stat. Sol. RRL, 5, 43 (2011). https://doi.org/10.1002/pssr.201004434

2. V.L.Cherginets, N.V.Rebrova, A.Yu.Grippa et al., Mater. .Chem. Phys., 143, 1296 (2014). https://doi.org/10.1016/j.matchemphys.2013.11.037

3. M.Zhuravleva, B.Blalock, K.Yang et al., J. Cryst. Growth, 352, 115 (2012). https://doi.org/10.1016/j.jcrysgro.2012.02.025

4. A.Yu Grippa, N.V.Rebrova, T.E.Gorbacheva et al., J. Cryst. Growth, 371, 112 (2013). https://doi.org/10.1016/j.jcrysgro.2013.02.020

5. Chemical Encyclopedia, in 5 volumes, v.4, ed. by N.S.Zefirov et al., Bolshaya Rossiyskaya Entsyklopediya, Moscow (1995) [in Russian].

6. Fusion Diagrams of Salt Systems. Part I, ed. by V.I.Posypaiko et al., Metallurgiya, Moscow (1977) [in Russian].

7. J.R.Raipurkar, R.G.Atram, P.L.Muthal et al., J. Luminescence, 136, 365 (2013). https://doi.org/10.1016/j.jlumin.2012.12.017

8. J.R.Raipurkar, R.G.Atram, P.L.Muthal et al., J. Luminescence, 134, 456 (2013). https://doi.org/10.1016/j.jlumin.2012.08.001

9. S.Voloshinovskii, V.B.Mikhailik, O.T.Antonyak et al., Radiat. Meas., 29, 251 (1998). https://doi.org/10.1016/S1350-4487(98)00018-3

10. P.A.Rodnyi, Radiat. Meas., 29, 235 (1998). https://doi.org/10.1016/S1350-4487(98)00015-8

11. E.Sysoeva, V.Tarasov, O.Zelenskaya, Nucl. Instrum. Meth. Phys. Res. A, 486, 67 (2002). https://doi.org/10.1016/S0168-9002(02)00676-9

12. M.Midorikawa, Y.Ishibashi, Y.Takagi, J. Phys. Soc. Jpn., 46, 1240 (1979). https://doi.org/10.1143/JPSJ.46.1240

13. A.Yu.Grippa, N.V.Rebrova, T.E.Gorbacheva et al., Nucl. Instrum. Meth. Phys. Res. A, 729, 356 (2013). https://doi.org/10.1016/j.nima.2013.07.077

14. N.V.Rebrova, A.Yu.Grippa, T.E.Gorbacheva et al., J. Luminescence, 182, 172 (2017). https://doi.org/10.1016/j.jlumin.2016.10.030

15. P.A.Rodnyi, Physical Processes in Inorganic Scintillators, CRC Press, New York (1997).

16. S.Shionoya, W.H.Yen, Phosphor Handbook, CRC Press LLC (1998).

Current number: