Funct. Mater. 2017; 24 (2): 226-236.

doi:https://doi.org/10.15407/fm24.02.226

Growth peculiarities of doped lithium dihydrogen phosphate single crystals from nonstoichiometric solution

A.N.Iurchenko1, A.P.Voronov1, A.D.Roshal2, S.I.Kryvonogov1, G.N.Babenko1, I.M.Pritula1

1Institute for Single Crystals, STCInstitute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave, 61001 Kharkiv, Ukraine
2V.Karazin Kharkiv National University, 4 Svobody Sq., 61002 Kharkiv, Ukraine

Abstract: 

Single crystals of lithium dihydrogen phosphate (LDP) have been grown on a seed by pulling-out from aqueous viscous solutions with an excess of orthophosphoric acid. The effect of solution stoichiometry on the habit and morphology of the faces of LDP single crystals is investigated. It is established that the habit of the crystals changes with the rise of concentration of the acid in the solution. Shown is the effect of dopants of thallium ions, molecules of salicylic and 5-aminosalicylic acid on the morphology of the crystal faces, which manifests itself in a diminution of the width of the terraces and an increase of the density of the growth steps. Proposed is a model of arrangement of the dopant molecules in the interplanar space of LDP crystal lattice.

Keywords: 
lithium dihydrogen phosphate, crystal growth, oriented crystal, doped crystal, fluorescence anisotropy, intramolecular proton transfer, ESIPT, thermal neutron capture, salicylic acid.
References: 

1. L.N.Rashkovich, KDP-family Single Crystals, Adam Hilger, Bristol (1991).

2. N.Zaitseva, L.Carman, Prog. Cryst. Growth Charact., 43, 1 (2001). https://doi.org/10.1016/S0960-8974(01)00004-3

3. M.Catti, G.Ivaldi, Zeitschrift fur Kristallographie-Crystal. Mater., 146, 215 (1978).

4. K.-S.Lee, J.-H.Ko, J.Moon et al., Sol. State Commun., 145, 487 (2008). https://doi.org/10.1016/j.ssc.2007.12.011

5. L.V.Soboleva, I.L.Smolsky, Crystallogr. Reports, 42, 700 (1997).

6. S.Haussuhl, Cryst. Res.Techn., 31, 323 (1996). https://doi.org/10.1002/crat.2170310310

7. K.-S.Lee, I.-H.Oh, J. J.Kweon et al., Mat. Chemi Phys., 136, 802 (2012). https://doi.org/10.1016/j.matchemphys.2012.08.001

8. A.P.Voronov, G.N.Babenko, A.N.Iurchenko et al., J. Cryst. Growth, 374, 49 (2013). https://doi.org/10.1016/j.jcrysgro.2013.04.009

9. W.Kaminsky, J. Appl. Crystallogr., 38, 566 (2005). https://doi.org/10.1107/S0021889805012148

10. D.Palmer, Yarnton, Oxfordshire, England (2009).

11. I.M.Bytieva, Cryst. Growth, 4, 22 (1964).

12. C.Sun, D.Xue, Rev. Adv. Sci. Engin., 1, 173 (2012). https://doi.org/10.1166/rase.2012.1013

13. D.A.Vorontsov, V.N.Portnov, V.P.Iershov, Abstr the 2-nd Intern. Conf. Genesis of Crystals and Mineralogy, S.-Petersburg (2007), p.8.

14. V.Wazer, Interscience, New York, 1, 480 (1958).

15. A.N.Iurchenko, A.P.Voronov, G.N.Babenko et al., Functional Materials, 3, 325 (2014).

16. N.Zaitseva, J.Newby, G.Hull et al., Cryst. Growth Design, 9, 3799 (2009). https://doi.org/10.1021/cg9005289

17. A.P.Voronov, V.B.Distanov, A.D.Roshal, Ukr. J. Chem., 74, 36 (2008).

18. J.J.De Yoreo, A.Wierzbicki, P.M.Dove, Cryst. Eng. Commun., 9, 1144 (2007). https://doi.org/10.1039/b713006f

19. I.P.Pozdnyakov, A.Pigliucci, N.Tkachenko et al., J. Phys. Org. Chem., 22, 449 (2009). https://doi.org/10.1002/poc.1489

20. A.Douhal, F.Lahmani, A.H.Zewail, J. Chem. Phys., 207, 477 (1996).

21. D.M.Friedrich, Z.Wang, A.G.Joly et al., J. Phys. Chem. A, 103, 9644 (1999). https://doi.org/10.1021/jp990405+

22. G.S.Denisov, N.S.Golubev, V.M.Schreiber et al., J. Molec. Struct., 436-437, 153 (1997).

23. N.Cabrera, D.A.Vermilyea, Proceedings, Wiley, New York (1958), p.393.

Current number: