Funct. Mater. 2017; 24 (2): 244-249.

doi:https://doi.org/10.15407/fm24.02.244

The plastic scintillator activated with fluorinated 3-hydroxyflavone

Yu.A.Gurkalenko, D.A.Eliseev, P.N.Zhmurin, V.N.Pereymak, O.V.Svidlo

Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

A new radiation-hard plastic scintillator (PS), based on polystyrene and activated with fluorinated 3-hydroxyflavone, is presented. The new scintillator has the light output half-attenuation dose equal to 11 Mrad, which is much more than a similar PS, containing 3-hydroxyflavone. Also, the temporal characteristics of the PS are investigated. The scintillation flash rise time was 0.5 ns, what is much faster than the rise time of conventional PS, equal to about 0.9 ns. Such properties of the new PS are achieved by application of fluorinated 3-hydroxyflavone as an activator.

Keywords: 
plastic scintillator, radiation hardness, rise time.
References: 

1. B.V.Grinev, V.G.Senchishin, Plastic Scintillators, Acta, Kharkov (2003) [in Russian].

2. Design Study of Large Hadron Collider, CERN 91-03.

3. The Level-1 Trigger Technical Design Report CERN/LHCC 2000-038, CMS TDR 6.1, 15, 40 (2000).

4. O.Bruning, R.Cappi, R.Garoby et al., R. LHC Project Report 626. LHC Luminosity and Energy Upgrade: A Feasibility Study (2002).

5. J.B.Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, London (1964).

6. A.D.Bross, A.Pla-Dalmau, Nucl. Instrum. Meth. Phys. Res. A, 327, 337 (1993). https://doi.org/10.1016/0168-9002(93)90699-I

7. E.S.Velmozhnaya, Yu.A.Gurkalenko, D.A.Eliseev et al., Functional Materials, 23, 650 (2016). https://doi.org/10.15407/fm23.04.463

8. V.C.Patil, IJPSR, 3, 5006 (2012).

9. S.Gunduz, A.C.Goren, T.Ozturk, Org. Lett., 14, 1576 (2012). https://doi.org/10.1021/ol300310e

10. J.Algar, J.P.Flynn, Proc. Roy. Irish Acad., 42B, 1 (1934).

11. B.Oyamada, J. Chem. Soc. Japan, 55, 1256 (1934).

12. R.Henning, R.Lattrell, H.J.Gerhards et al., J. Med. Chem., 30, 814 (1987). https://doi.org/10.1021/jm00388a012

13. A.-G.Yua, N.-X.Wang, Y.-L.Xing et al., Synlett, No.9, 1465 (2005).

14. K.Yang, Z.Li, Z.Wang et al., Org. Lett., 13, 4340 (2011). https://doi.org/10.1021/ol2016737

15. J.Jia, C.Jiang, X.Zhang et al., Tetrahedron Lett., 52, 5593 (2011). https://doi.org/10.1016/j.tetlet.2011.08.059

16. B.Bengtson, M.Moszynski, Nucl. Instrum. Meth. Phys. Res., 158, 1 (1979). https://doi.org/10.1016/S0029-554X(79)90170-8

17. G.Zhang, J.K.Thomas, J. Phys. Chem., 100, 11438 (1996).

https://doi.org/10.1021/jp961074t

Current number: