Funct. Mater. 2017; 24 (2): 264-269.

doi:https://doi.org/10.15407/fm24.02.264

Effect of Y addition on the microstructures and mechanical properties of Mg–Gd–Y–Sm–Zr alloys

Fu sanling1, Li quanan2, Chen Jun2, Zhang Qing2

1 College of Physics and Engineering; Henan University of Science and Technology, Luoyang, 471023, China
2 School of Materials Science and Engineering; Henan University of Science and Technology, Luoyang 471023, China

Abstract: 

The microstructure and mechanical properties of Mg–12Gd–xY–Sm–0.5Zr (x = 0, 1, 3, 5; mass%) alloys were investigated. Results showed β’-Mg5Gd phase composition evolution of Mg5(Gd,Y). The tensile strength of the alloys are better the WE54 alloy at high temperatures (200–300 °C). The optimal mechanical properties of the Mg-12Gd-3Y-1Sm-0.5Zr alloy are achieved at high temperatures, and the maximum tensile strength of this alloy is 323 MPa at 250 °C. The short heat-resisting performance of Mg–Gd–Y–Sm–Zr alloys under the high temperature will provide new scientific basis for the development of heat resistant magnesium alloys.

Keywords: 
Y, Mg–Gd–Sm–Zr alloy, microstructure, tensile property.
References: 

1. B.L.Mordike and T. Ebert, Mat. Sci. Eng A, 302, 37, 2001. https://doi.org/10.1016/S0921-5093(00)01351-4

2. X.Y. Xia, A.A. Luo, D.S. Stone, J. Alloy.Comp., 649, 649, 2015. https://doi.org/10.1016/j.jallcom.2015.07.129

3. S. Zhang, W.C. Liu, X.Y. Gu, C. Lu, et al, J. Alloy.Comp., 557, 91, 2013. https://doi.org/10.1016/j.jallcom.2012.12.093

4. K.Y. Zheng, J. Dong, X.Q. Zeng W.J. Ding, Mat. Charact., 59, 857, 2008. https://doi.org/10.1016/j.matchar.2007.07.002

5. X. Xia, K. Zhang, X. Li, M. Ma, Y. Li. Mat.Design, 44, 521, 2013. https://doi.org/10.1016/j.matdes.2012.08.043

6. Z.H. Wang, W.B. Du, X.D. Wang, et al Trans.Nonferr. Metals Soc. China, 23, 593, 2013. https://doi.org/10.1016/S1003-6326(13)62504-2

7. Y.B. Hu, J. Deng, C. Zhao, et al, Trans.Nonferr. Metals Soc. China, 21, 732, 2011. https://doi.org/10.1016/S1003-6326(11)60773-5

8. Q.M. Peng, N. Ma, H. Li, J. Rare Earths, 30, 1064, 2012. https://doi.org/10.1016/S1002-0721(12)60179-3

9. Y. Gao, H. Liu, R. Shi, et al, Acta Mat., 61, 453, 2013. https://doi.org/10.1016/j.actamat.2013.02.009

10. J.L. Wang, L.D. Wang, Y.M. Wu,, Mat. Sci.Eng. A, 528, 4115, 2011. https://doi.org/10.1016/j.msea.2011.01.109

11. T. Honma, T. Ohkubo, K. Hono, S. Kamado, Mat. Sci. Eng.: A, 395, 301, 2005. https://doi.org/10.1016/j.msea.2004.12.035

12. Z. Yang, J.P. Li, Y.X. Wu, Z.L. Yang, Foundry, 62, 545, 2013.

13. Z.Y. Zhang, L.M. Peng, X.Q. Zeng, et al Mat. Charact., 60, 555, 2009.

https://doi.org/10.1016/j.matchar.2009.01.002

Current number: